Control Bifurcations of a Magneto-Rheological Fluid Based Active Suspension System

Author(s):  
Amit Shukla

Design of active suspension systems is well known, however the notion of control bifurcations for the design of such systems has been introduced recently. A nonlinear active suspension system consisting of a magneto-rheological damper is analyzed in this work. It is well known that a parameterized nonlinear differential equation can have multiple equilibria as the parameter is varied. A local bifurcation of a parameterized nonlinear system typically happens because some eigenvalues of the parameterized linear approximating differential equation cross the imaginary axis and there is a change in stability of the equilibrium. The qualitative change in the equilibrium point can be characterized by investigating the projection of the flow on the center manifold. A control bifurcation of a nonlinear system typically occurs when its linear approximation loses stabilizability. In this work the control bifurcations of a magneto-rheological fluid based active suspension system is analyzed. Some parametric results are presented with suggestions on how to design nonlinear control based on the parametric control bifurcation analysis as applied to the design of an active suspension system.

2019 ◽  
Vol 26 (11-12) ◽  
pp. 952-964 ◽  
Author(s):  
Wu Qin ◽  
Wen-Bin Shangguan ◽  
Kegang Zhao

Based on a nonlinear two-degree-of-freedom model of active suspension systems, an approach of the sliding mode control with disturbance observer combining skyhook model sliding mode control with disturbance observer combining is proposed for improving the performance of active suspension systems, and the effectiveness of the proposed approach is validated by the active suspension system plant. Two problems of active suspension systems are solved by using the proposed approach when the tire is excited by the step displacement. One problem is that the suspension deflection of active suspension systems, i.e. the difference between the sprung mass displacement and the unsprung mass displacement, using conventional sliding mode control with disturbance observer not converges to zero in finite time, and the phenomenon of the impact of suspension against the limit block is produced. This problem is solved by providing a reference value of the sprung mass displacement in an active suspension system, which is obtained from the skyhook model. The other problem is that disturbances exist in active suspension systems, which are caused by the inaccurate parameters of stiffness and damping. This problem is solved by designing a disturbance observer to estimate the summation of the disturbances. Finally, the performance indexes of the active suspension system with the sliding mode control with disturbance observer combining skyhook model are calculated and compared with those of using the conventional sliding mode control with disturbance observer and the linear quadratic regulator approach.


Author(s):  
Amit Shukla ◽  
Jeong Hoi Koo

Nonlinear active suspension systems are very popular in the automotive applications. They include nonlinear stiffness and nonlinear damping elements. One of the types of damping element is a magneto-rheological fluid based damper which is receiving increased attention in the applications to the automotive suspension systems. Latest trends in suspension systems also include electronically controlled systems which provide advanced system performance and integration with various processes to improve vehicle ride comfort, handling and stability. A control bifurcation of a nonlinear system typically occurs when its linear approximation loses stabilizability. These control bifurcations are different from the classical bifurcation where qualitative stability of the equilibrium point changes. Any nonlinear control system can also exhibit control bifurcations. In this paper, control bifurcations of the nonlinear active suspension system, modeled as a two degree of freedom system, are analyzed. It is shown that the system looses stability via Hopf bifurcation. Parametric control bifurcation analysis is conducted and results presented to highlight the significance of the design of control system for nonlinear active suspension system. A framework for the design of feedback using the parametric analysis for the control bifurcations is proposed and illustrated for the nonlinear active suspension system.


1979 ◽  
Vol 101 (4) ◽  
pp. 321-331
Author(s):  
L. M. Sweet ◽  
H. C. Curtiss ◽  
R. A. Luhrs

A linearized model of the pitch-heave dynamics of a Tracked Ram Air Cushion Vehicle is presented. This model is based on aerodynamic theory which has been verified by wind tunnel and towed model experiments. The vehicle is assumed to be equipped with two controls which can be configured to provide various suspension system characteristics. The ride quality and dynamic motions of the fixed winglet vehicle moving at 330 km/hr over a guideway described by roughness characteristics typical of highways is examined in terms of the rms values of the vertical acceleration in the foremost and rearmost seats in the passenger cabin and the gap variations at the leading and trailing edges of the vehicle. The improvement in ride quality and dynamic behavior which can be obtained by passive and active suspension systems is examined and discussed. Optimal regulator theory is employed to design the active suspension system. The predicted rms values of the vertical acceleration in the one-third octave frequency bands are compared with the vertical ISO Specifications. It is shown that marked improvements in the ride quality can be obtained with either the passive or active suspension systems.


Author(s):  
Vikas Prasad ◽  
P. Seshu ◽  
Dnyanesh N. Pawaskar

Abstract In this paper, the design of the suspension system for Heavy Goods Vehicles (HGV) is proposed, which deals with two performance criteria simultaneously. A semi-tractor trailer is used in present work and modeled with half vehicle model. Four types of linear, as well as non-linear, passive and semi-active suspension systems, are presented in this work. The control law is proposed for the semi-active suspension system using a PID controller to remove the need for passive damper along with active damper. Two objective optimization is performed using the Non-dominated Sorting Genetic Algorithm II (NSGA-II). Road Damage (RD) is taken as the first objective along with Goods Damage (GD) as the second objective. All problems are minimization problems. It is concluded based on Pareto front comparison of different suspension systems that the semi-active suspension system with the proposed control law performs well for HGV.


Author(s):  
E.M Allam ◽  
M.A.A Emam ◽  
Eid.S Mohamed

This paper presents the effect of the suspension working space, body displacement, body acceleration and wheel displacement for the non-controlled suspension system (passive system) and the controlled suspension system of a quarter car model (semi-active system), and comparison between them. The quarter car passive and semi-active suspension systems are modelled using Simulink. Proportional Integral Derivative controllers are incorporated in the design scheme of semi-active models. In the experimental work, the influence of switchable damper in a suspension system is compared with the passive and semi-active suspension systems.


Author(s):  
D. J. Purdy ◽  
D. N. Bulman

The well-established quarter car representation is used to investigate the design of an active suspension system for a racing car. The work presented is from both a practical and theoretical study. The experimental open-loop and passive responses of the suspension system are used to validate the model and estimate the level of damping within the system. A cascade control structure is used, consisting of an inner body acceleration loop and an outer ride height loop. Comparisons are made between the experimental results and those predicted by the theory. During the 1980s and early 1990s a number of Formula 1 teams developed active suspension systems to improve the performance of cars. Little detail was published about these systems because of the highly competitive nature of the application. Some of these systems were very sophisticated and successful. Because of this, speed increased considerably and because of the costs involved, the difference in performance between the lower and higher funded teams became unacceptable. For this reason, the governing body of motor sport decided to ban active suspensions from the end of the 1993 racing season. Both authors of this paper were involved with different racing teams at that time, and this paper is an introduction to the very basic philosophy behind a typical active system that was employed on a Formula 1 car.


Author(s):  
N.M. Ghazaly ◽  
A.S Ahmed ◽  
A.S Ali ◽  
G.T Abd El- Jaber

In recent years, the use of active control mechanisms in active suspension systems has attracted considerable attention. The main objective of this research is to develop a mathematical model of an active suspension system that is subjected to excitation from different road profiles and control it using H∞ technique for a quarter car model to improve the ride comfort and road handling. Comparison between passive and active suspension systems is performed using step, sinusoidal and random road profiles. The performance of the H∞ controller is compared with the passive suspension system. It is found that the car body acceleration, suspension deflection and tyre deflection using active suspension system with H∞ technique is better than the passive suspension system.


Symmetry ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1286
Author(s):  
Ayman Aljarbouh ◽  
Muhammad Fayaz

Rigorous model-based design and control for intelligent vehicle suspension systems play an important role in providing better driving characteristics such as passenger comfort and road-holding capability. This paper investigates a new technique for modelling, simulation and control of semi-active suspension systems supporting both ride comfort and road-holding driving characteristics and implements the technique in accordance with the functional mock-up interface standard FMI 2.0. Firstly, we provide a control-oriented hybrid model of a quarter car semi-active suspension system. The resulting quarter car hybrid model is used to develop a sliding mode controller that supports both ride comfort and road-holding capability. Both the hybrid model and controller are then implemented conforming to the functional mock-up interface standard FMI 2.0. The aim of the FMI-based implementation is to serve as a portable test bench for control applications of vehicle suspension systems. It fully supports the exchange of the suspension system components as functional mock-up units (FMUs) among different modelling and simulation platforms, which allows re-usability and facilitates the interoperation and integration of the suspension system components with embedded software components. The concepts are validated with simulation results throughout the paper.


Author(s):  
Stijn De Bruyne ◽  
Jan Anthonis ◽  
Marco Gubitosa ◽  
Herman Van der Auweraer ◽  
Wim Desmet ◽  
...  

Active suspension systems aim at increasing safety by improving vehicle ride and handling performance while ensuring superior passenger comfort. This paper addresses the influence of the actuator management on the comfort performance of a complete hydraulic active suspension system. An innovative approach, based on nonlinear Model Predictive Control, is proposed and compared to a classical approach that employs a steady-state performance map of the actuator. A simulation analysis shows how taking into account actuator dynamics improves the actuator’s force tracking performance, leading to an improvement of the overall vehicle comfort performance.


Sign in / Sign up

Export Citation Format

Share Document