SPATIAL ANALYSIS OF SHORELINE CHANGES IN THE COASTAL OF SUBANG DISTRICT, WEST JAVA

2012 ◽  
Vol 4 (2) ◽  
Author(s):  
Ankiq Taofiqurohman ◽  
M. Furqon Azis Ismail ◽  
M. Furqon Azis Ismail ◽  
M. Furqon Azis Ismail

ABSTRACT Observation of coastal shoreline changes in the Subang District was conducted using Digital Shoreline Analysis System Program based on the satelite images of Landsat TM from 1996 to 2010. The purpose of this study was to determine the distance of shoreline change. Methods used in this study were field survey and regression analysis of shoreline data. The results of this study indicated the existence of a region experiencing accretion and abrasion. The maximum width of accretion of the coast was 1,051.55 meter while the maximum abration was 1,206.83 meter. Coastal shoreline change in Subang District occurred mainly due to the development activities such as residential construction, altering the coastal mangrove to ponds and rice paddies, and sediment transport from the river around Subang District. Keywords: shoreline, Subang District, satelite images, accretion, abration

2012 ◽  
Vol 4 (2) ◽  
Author(s):  
Ankiq Taofiqurohman ◽  
M. Furqon Azis Ismail ◽  
M. Furqon Azis Ismail ◽  
M. Furqon Azis Ismail

<p>ABSTRACT</p> <p>Observation of coastal shoreline changes in the Subang District was conducted using Digital Shoreline Analysis System Program based on the satelite images of Landsat TM from 1996 to 2010. The purpose of this study was to determine the distance of shoreline change. Methods used in this study were field survey and regression analysis of shoreline data. The results of this study indicated the existence of a region experiencing accretion and abrasion. The maximum width of accretion of the coast was 1,051.55 meter while the maximum abration was 1,206.83 meter. Coastal shoreline change in Subang District occurred mainly due to the development activities such as residential construction, altering the coastal mangrove to ponds and rice paddies, and sediment transport from the river around Subang District.</p> <p>Keywords: shoreline, Subang District, satelite images, accretion, abration</p>


2012 ◽  
Vol 8 (3) ◽  
pp. 75 ◽  
Author(s):  
Ankiq Taofiqurohman ◽  
Mochamad Furqon Azis Ismail

Pengamatan mengenai perubahan garis pantai di pesisir Kabupaten Subang, Jawa Barat telah dilakukan dengan menggunakan program Digital Shoreline Analysis System berdasarkan citra satelit Landsat TM dari tahun 1996–2010. Tujuan dari penelitian ini adalah untuk mengetahui besar perubahan garis pantai di Kabupaten Subang serta zonasi kawasan yang mengalami perubahan garis pantai tersebut. Metode yang digunakan adalah pemprosesan citra dan survey lapangan. Hasil dari penelitian ini menunjukkan bahwa dari tahun 1996–2010 perairan pesisir Kabupaten Subang mengalami perubahan garis pantai oleh adanya akresi dan abrasi yang maksimalnya sejauh lebih dari 1 km. Hasil analisis regresi antara perubahan waktu dengan akresi serta abrasi memberikan nilai positif. Secara keseluruhan, lebih dari 50% panjang pesisir Kabupaten Subang dikategorikan dalam kerusakan yang parah. Perubahan garis pantai di Pesisir Kabupaten Subang terjadi terutama karena kegiatan pembangunan di sekitar pesisir seperti pembukaan lahan mangrove menjadi tambak dan sawah, pembangunan pemukiman, serta transpor sedimen dari sungai-sungai di kawasan pesisir Kabupaten Subang. Kata kunci: perubahan garis pantai, Kabupaten Subang, citra satelit, akresi, abrasi.   Observation of coastal shoreline changes in the Subang District was conducted using Digital Shoreline Analysis System Program based on the satellite images of Landsat TM from 1996 to 2010. The purpose of this study was to determine the distance of shoreline change and the zoning area in the Coastal of Subang District. Methods used in this study were images processing and field survey. The results of the study indicated the presence of shoreline changes which experienced maximum accretion and abrasion of more than 1 km between 1996 to 2010. The results of regression analysis between time and accretion as well as time and abrasion showed positive correlation. More than 50% the coastal area of Kabupaten Subang was in severely damaged con­dition. Coastal shoreline change in Kabupaten Subang occurred mainly due to the developmental activities such as residential construction, coastal mangrove conversion to ponds and rice paddies and sediment transport from the river around Kabupaten Subang. Keywords: shoreline change, Subang District, satellite images, accretion, abrasion.


2021 ◽  
Vol 14 (11) ◽  
pp. 13-24
Author(s):  
Anh Tu Ngo ◽  
Stéphane Grivel ◽  
Thai Le Phan ◽  
Huu Xuan Nguyen ◽  
Trong Doi Nguyen

The research focuses on using Sentinel-2 that can be integrated with the Digital Shoreline Analysis System (DSAS) as an effective tool for the determination of changes in the riverbanks and using linear regression to predict shoreline changes. The research applied the assessment of shoreline changes in the period of 2015- 2020 and forecast to 2025 in Laigiang river of the South Central Coast region of Vietnam. Based on the DSAS tool, parameters such as Shoreline Change Envelope (SCE), Net Shoreline Movement (NSM), End Point Rate (EPR) and Linear Regression Rate (LRR) were determined. The analysis results show that the accretion process in the Laigiang river in the period of 2015-2020 with the accretion area ranges from 81.47 ha. Meanwhile, the area of shoreline erosion only fluctuates around 54.42 ha. The rhythm of evolution is a determinant element for this transitional system.


Omni-Akuatika ◽  
2020 ◽  
Vol 16 (2) ◽  
pp. 90
Author(s):  
Abdurrahman Al Farrizi ◽  
Ankiq Taofiqurohman ◽  
Subiyanto Subiyanto

Coastal areas, being vulnerable to environmental problems, have one of the most frequent problems which are the change in the shorelines. Shoreline changes, namely abrasions, can cause problems such as land degradations or loss of land in a coastal zone. This problem occurs in many areas, one of which is Pontang Cape. This study aims to determine the distance and rate of shoreline changes that occured in the Cape and its surroundings, as well as explaining the analysis points based on similar studies that had been conducted. This research used ArcMap software and Digital Shoreline Analysis System (DSAS) toolset to determine the distance and rate of shoreline changes for 19 years (1999-2018). Based on the results, there were two shoreline segments where different phenomena of shoreline change took place, namely Banten Bay (accretion) and Pontang Cape-Lontar (abrasion). The most likely causes of changes in the shorelines are sediment runoffs from rivers that lead to bay and sediment transports that affect Banten Bay accretions, while sea sand mining and conversions of mangrove swamps into fishery ponds are factors affecting abrasions in Pontang Cape.Keywords: Abrasion, Accretion, Pontang Cape, Banten Bay, DSAS


2019 ◽  
Vol 5 (2) ◽  
pp. 122
Author(s):  
Usman Usman ◽  
Muhammad Azis Irbani

This study aims to analyze the changes in the coastline in the coastal of Makassar city by using Digital Shoreline Analysis System (DSAS) method. The data used in this study was secondary data in the form of Landsat 5 and Landsat 8 digital satellite data which were acquired on 8 April 2019 and have been corrected radiometrically and geometrically obtained from the Lembaga Penerbangan dan Antariksa Nasional (LAPAN). The data was processed using ArcGIS 10.3 to obtain the overlay result. Shoreline Movement (NSM) and End Point Rate (EPR) methods used to calculate shoreline change calculations. Observation of shoreline changes takes 12 years using data in 2006, 2010, 2013, and 2018. Based on the results of the analysis with the method of Digital Shoreline Analysis System (DSAS) found that during 12 years the coast of Makassar experienced a change in coastline which is accretion due to reclamation that occurred in Tallo and Tamalate sub-districts.


2021 ◽  
Vol 24 (3) ◽  
pp. 302-310
Author(s):  
Dwi Fajriyati Inaku ◽  
Nurjannah Nurdin ◽  
Dewi Yanuarita Satari

Detection of shoreline changes needs to be done to determine changes so that supervision and management planning in a coastal area can be carried out, one of which is on the coast of Takalar Regency, South Sulawesi. This study aims to map changes in the coastline in Takalar Regency in different seasons and to see the effect of the waves on these changes. This study uses Landsat satellite imagery data from 1998-2018, and wave data obtained from Copernicus Marine Environment Monitoring Services (CMEMS). The shoreline data extraction was using the combination of single band and band ratio approach while the shoreline change rate calculation was using the Digital Shoreline Analysis System (DSAS) application. In addition, GeoDa application was used to obtain the regression analysis of the effect of waves on shoreline changes. The results showed that there were similar patterns of shoreline changes between monsoon and west monsoon, although the value were different. Coastal erosion occurs in almost all Takalar coastal area. Some areas that have a high coastal erosion value were the sub-district of South Galesong and Mappakasunggu while the areas that have a high accretion value were the sub-districts of Sanrobone, Mappakasunggu, and Mangarabombang. The waves had a significant influence on changes in shoreline in both the monsoon and west monsoon (P <0.05) with a percentage of 17,2% for the monsoon and 7.3% for the west monsoon which indicated there were other factors that influence shoreline change besides the wave factor on the Takalar Coast. Deteksi perubahan garis pantai perlu dilakukan dalam rangka pengawasan dan perencanaan pengelolaan di suatu kawasan, salah satunya di Pesisir Kabupaten Takalar, Sulawesi Selatan. Penelitian ini bertujuan untuk memetakan perubahan garis pantai di Kabupaten Takalar berdasarkan musim dan melihat pengaruh gelombang terhadap perubahan tersebut. Penelitian ini menggunakan data Citra Satelit Landsat tahun 1998-2018, dan data gelombang yang diperoleh dari Copernicus Marine Environment Monitoring Services (CMEMS). Ekstraksi data garis pantai menggunakan pendekatan perkalian single band dan ratio band sedangkan perhitungan laju perubahan garis pantai menggunakan aplikasi Digital Shoreline Analysis System (DSAS). Analisis regresi untuk melihat pengaruh gelombang terhadap perubahan garis pantai menggunakan aplikasi GeoDa. Hasil penelitian menunjukkan terdapat pola yang hampir sama antara perubahan garis pantai musim timur dan musim barat meskipun dengan besaran yang berbeda. Abrasi terjadi hampir di seluruh Pesisir Takalar. Daerah yang memiliki nilai abrasi yang tinggi yaitu Kecamatan Galesong Selatan dan Mappakasunggu sedangkan daerah yang memiliki nilai akresi tinggi yaitu Kecamatan Sanrobone, Mappakasunggu, dan Mangarabombang. Gelombang memberikan pengaruh yang signifikan terhadap perubahan garis pantai baik pada musim timur maupun barat (P<0,05) dengan persentase 17,2% untuk musim timur dan 7,3% untuk musim barat yang mengindikasikan terdapat faktor lain yang ikut mempengaruhi perubahan garis pantai selain faktor gelombang di Pesisir Takalar.


Author(s):  
Fajar Lukman Hakim ◽  
Takahiro Osawa ◽  
I Wayan Sandi Adnyana

Based on data from the Bali Public Works Office, in 1987 the abrasion reached 51.50 km, in 2003 it reached 86.5 km, and in 2006 it increased to 140 km. Coastline change research is needed for coastal environmental protection, mitigation, and sustainable development. The objectives of this research are: 1) To predict wind speed and direction for the last 30 years; 2) To measure changes in coastlines over the last 30 years (1989-2020); and 3) Comparison of changes in coastline in 4 periods 1989-2000; 2000-2010; 2010-2020 and 2016-2020. Digital Shoreline Analysis System (DSAS) is a method that works on ArcGIS software which is used to calculate shoreline changes based on time statistics and a geospatial basis. The results of the average EPR in 1989-2000 (Landsat imagery), the average abrasion value was -10.43 m/y and the average accretion value was 2.35 m/y; 2000-2010 the average value of EPR abrasion was -2.61 m/y and the average accretion value of 2.65 m/y; in 2010-2020 the average EPR abrasion value was -2.72 m/y and the average accretion value was 1.60 m/y while in 2016-2020 (Sentinel Image) the average abrasion value was -4.32 m/ y and the average value of its accretion is 4.50 m/y. The conclusion of this study 1) The average wind speed ranges from 0.2 to 6.4 m/s. Wind direction shows the dominance of the Australian continent (southeast). This shows that the east monsoon is more dominant than the west monsoon; 2) In the last 30 years (1989-2020) shoreline changes can be seen from the EPR graph with an average abrasion rate of -6.39 m/ y and an accretion rate of 3.15 m/y; and 3) Identification results from 1989-2000 the villages of Padangbai and Ketewel experienced extreme accretion and high abrasion; 2000-2010 Padangbai and Jumpai villages experienced high accretion and abrasion; In 2010-2020, Jumpai and Gunaksa Villages experienced high abrasion and moderate accretion, while 2016-2020 experienced high abrasion and accretion in Tangkas and Gunaksa Villages. For further research, it can include additional variables such as tide and wave data to get better results.Keywords: DSAS, NSM, EPR, Shoreline Changes, Abrasion, Accretion


Wetlands ◽  
2021 ◽  
Vol 41 (4) ◽  
Author(s):  
Dandan Yan ◽  
Xiuying Yao ◽  
Jingtai Li ◽  
Liping Qi ◽  
Zhaoqing Luan

Sign in / Sign up

Export Citation Format

Share Document