Sensitivity Analysis and Optimization of Delta Wing Design Parameters using CFD-Based Response Surface Method

2019 ◽  
Vol 12 (6) ◽  
pp. 1885-1903
Author(s):  
M. Aelaei ◽  
S. Karimian ◽  
F. Ommi ◽  
◽  
◽  
...  
2021 ◽  
Vol 11 (19) ◽  
pp. 9002
Author(s):  
Qiang Yang ◽  
Hongkun Ma ◽  
Jiaocheng Ma ◽  
Zhili Sun ◽  
Cuiling Li

Kinematic accuracy is a crucial indicator for evaluating the performance of mechanisms. Low-mobility parallel mechanisms are examples of parallel robots that have been successfully employed in many industrial fields. Previous studies analyzing the kinematic accuracy analysis of parallel mechanisms typically ignore the randomness of each component of input error, leading to imprecise conclusions. In this paper, we use homogeneous transforms to develop the inverse kinematics models of an improved Delta parallel mechanism. Based on the inverse kinematics and the first-order Taylor approximation, a model is presented considering errors from the kinematic parameters describing the mechanism’s geometry, clearance errors associated with revolute joints and driving errors associated with actuators. The response surface method is employed to build an explicit limit state function for describing position errors of the end-effector in the combined direction. As a result, a mathematical model of kinematic reliability of the improved Delta mechanism is derived considering the randomness of every input error component. And then, reliability sensitivity of the improved Delta parallel mechanism is analyzed, and the influences of the randomness of each input error component on the kinematic reliability of the mechanism are quantitatively calculated. The kinematic reliability and proposed sensitivity analysis provide a theoretical reference for the synthesis and optimum design of parallel mechanisms for kinematic accuracy.


2020 ◽  
Vol 142 (11) ◽  
Author(s):  
Yuanzhou Zheng ◽  
Shuaiqi Wang ◽  
Annunziata D’Orazio ◽  
Arash Karimipour ◽  
Masoud Afrand

Abstract In the current paper, the behavior of zinc oxide/SAE50 nano lubricant as a part of the new generation of coolants and lubricants is examined using response surface method (RSM). The data used in this study were viscosity at dissimilar volume concentrations (0–1.5%) and temperatures (5–50 °C) for dissimilar shear rate values. Therefore, sensitivity analysis based on variation of nanoparticle (NP) concentration and temperature was also implemented. The findings revealed that enhancing the volume fraction (φ) exacerbates the viscosity sensitivity to temperature. Given the noteworthy deviance between the experimental viscosity and the data forecasted by existing classical viscosity correlations, a novel regression model is gained. R2 and adj-R2 for this model were calculated as 0.9966 and 0.9965, respectively, which represent a very good prediction with a standard deviation of 3%.


2014 ◽  
Vol 565 ◽  
pp. 92-97 ◽  
Author(s):  
Jian Yang Li ◽  
Hong Yan Wang ◽  
Qiang Rui ◽  
Huang Jie Hong

The airborne vehicle would suffer from impact at landing. The magnitude of impact and stability of airborne vehicle are constraint parameters of successful landing. There was a lack of scientific explanation on the sensitivity of landing condition parameters. For overcoming the deficiency of classical sensitivity analysis, this paper describes the application of new technology for the sensitivity analysis. Based on the Finite Element and Response Surface method, the research on sensitivity analysis of landing condition parameters was proposed. The results have important significance in the design and optimization of airborne vehicle and airbags system. It can be also provide guidance for airdrop operation.


Author(s):  
Shengli Xu ◽  
Shaowei Zhong ◽  
Haixin Zhao

This paper studies the optimization method of pump hydraulic performance based on the response surface method. A parametric model of impeller and diffuser is established. Three-dimensional optimization is carried out on the basis of the initial model obtained by one-dimensional design method. We select the pump hydraulic efficiency and the head as objective function and constraint function. Response surface models are constructed to analyze the relationship between the objectives and the design variables, and the global optimization of hydraulic performance is realized. According to the internal flow characteristics of pump, this paper proposes the strategy of two steps optimization, which aims at meridional plane and blade shape, respectively, to solve the problem of large numbers of design parameters and computational cost. The optimization results show that the hydraulic efficiency of pump increased by 3.7%, and the head is nearly the same.


Sign in / Sign up

Export Citation Format

Share Document