A Study on the Diagnosis of Photovoltaic Power Plants Applying STC Compensation Techniques and Considering Facility Loss

2021 ◽  
Vol 26 (4) ◽  
pp. 39-48
Author(s):  
Chan-Eom Park
IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Tekai Eddine Khalil Zidane ◽  
Mohd Rafi Adzman ◽  
Mohammad Faridun Naim Tajuddin ◽  
Samila Mat Zali ◽  
Ali Durusu ◽  
...  

2021 ◽  
Vol 1878 (1) ◽  
pp. 012015
Author(s):  
T E K Zidane ◽  
S M Zali ◽  
M R Adzman ◽  
M F N Tajuddin ◽  
A Durusu

2019 ◽  
Vol 2 (S1) ◽  
Author(s):  
Jelenko Karpić ◽  
Ekanki Sharma ◽  
Tamer Khatib ◽  
Wilfried Elmenreich

Abstract The rising demand for sustainable energy requires to identify the sites for photovoltaic systems with the best performance. This paper tackles the question of feasibility of photovoltaic power plants at high altitude. A direct comparison between an alpine and an urban area site is conducted in the south of Austria. Two low-cost automatic photovoltaic power measurement devices with dual-axis sun tracking and maximum power point tracking are deployed at two test sites. The system periodically performs a scan over the southern semihemisphere and executes maximum power point adjustment in order to assess the performance for a given direction. The gathered data shows a higher photovoltaic power yield in the higher altitude test site. Furthermore, the high altitude photovoltaic power as a function of azimuth and elevation angle appears to be not only higher but also more flat than in lower altitudes. This indicates a lower power loss in case of deviation from the optimal solar angles. The results show that even on low-cost hardware a difference in photovoltaic power can be observed, even though in this experiment it amounts to less than 5% increase of peak power in higher altitudes. However, the measured peak powers on the mountain are more stable and therefore closer to a constant level than the heavily fluctuating peak power values at the low altitude site. Additionally, a slight shift in optimal elevation angles between altitudes can be observed, as the optimum angle turns out to be lower on the high altitude site. This angle shift could be caused by snow reflections on the mountainous test site.


2013 ◽  
Vol 8 ◽  
pp. 192-199 ◽  
Author(s):  
Georgios C. Christoforidis ◽  
Theofilos A. Papadopoulos ◽  
Constantinos Parisses ◽  
Georgios E. Mantzaras

2021 ◽  
Vol 11 (2) ◽  
pp. 727 ◽  
Author(s):  
Myeong-Hwan Hwang ◽  
Young-Gon Kim ◽  
Hae-Sol Lee ◽  
Young-Dae Kim ◽  
Hyun-Rok Cha

In recent years, photovoltaic (PV) power generation has attracted considerable attention as a new eco-friendly and renewable energy generation technology. With the recent development of semiconductor manufacturing technologies, PV power generation is gradually increasing. In this paper, we analyze the types of defects that form in PV power generation panels and propose a method for enhancing the productivity and efficiency of PV power stations by determining the defects of aging PV modules based on their temperature, power output, and panel images. The method proposed in the paper allows the replacement of individual panels that are experiencing a malfunction, thereby reducing the output loss of solar power generation plants. The aim is to develop a method that enables users to immediately check the type of failures among the six failure types that frequently occur in aging PV panels—namely, hotspot, panel breakage, connector breakage, busbar breakage, panel cell overheating, and diode failure—based on thermal images by using the failure detection system. By comparing the data acquired in the study with the thermal images of a PV power station, efficiency is increased by detecting solar module faults in deteriorated photovoltaic power plants.


Sign in / Sign up

Export Citation Format

Share Document