scholarly journals Cold Wire Gas Metal Arc Welding: Droplet Transfer and Geometry

Author(s):  
Author(s):  
Y Wu ◽  
R Kovacevic

Gas metal arc welding has been generally accepted as the preferred joining technique due to its advantages in high production and automated welding applications. Separate control of arc energy and arc force is an essential way to improve the welding quality and to obtain the projected metal transfer mode. One of the most effective methods for obtaining separate control is to exert an additional force on the metal transfer process. In this paper, the droplet transfer process with additional mechanical force is studied. The welding system is composed of an oscillating wire feeder. The images of molten metal droplets are captured by a high-speed digital camera, and both the macroscopic appearance and the cross-sectional profiles of the weld beads are analysed. It is shown that the droplet transfer process can be significantly improved by wire electrode oscillation, and a projected spray transfer mode can be established at much lower currents. By increasing the oscillation frequency, the droplet transfer rate increases while the droplet size decreases. In addition, the improvement in the droplet transfer process with wire oscillation leads to an enhancement of the surface quality and a modification of the geometry of the weld beads that could be of importance for overlay cladding and rapid prototyping based on deposition by welding.


2019 ◽  
Vol 64 (1) ◽  
pp. 123-140 ◽  
Author(s):  
R. A. Ribeiro ◽  
P. D. C. Assunção ◽  
E. B. F. Dos Santos ◽  
E. M. Braga ◽  
A. P. Gerlich

2017 ◽  
Vol 22 (8) ◽  
pp. 706-713 ◽  
Author(s):  
E. S. Costa ◽  
P. D. C. Assunção ◽  
Emanuel B. F. Dos Santos ◽  
L. G. Feio ◽  
M. S. Q. Bittencourt ◽  
...  

2021 ◽  
Vol 100 (4) ◽  
pp. 121-131
Author(s):  
R. A. RIBEIRO ◽  
◽  
P. D. C. ASSUNÇÃO ◽  
E. B. F. DOS SANTOS ◽  
E. M. BRAGA ◽  
...  

The electrical current required for a transition from globular to spray droplet transfer during gas metal arc welding (GMAW) is determined by the specified wire feed speed in the case of constant-voltage power supplies. Generally, in narrow groove welding, spray transfer is avoided, be-cause this transfer mode can severely erode the groove sidewalls. This work compared the globular-to-spray transition mechanism in cold wire gas metal arc welding (CW-GMAW) vs. standard GMAW. Synchronized high-speed imaging with current and voltage samplings were used to characterize the arc dynamics for different cold wire mass feed rates. Subsequently, the droplet frequency and diameter were estimated, and the parameters for a globular-to-spray transition were assessed. The results suggest that the transition to spray occurs in CW-GMAW at a lower current than in the standard GMAW process. The reason for this difference appears to be linked to an enhanced magnetic pinch force, which is mainly responsible for metal transfer in higher welding current conditions.


Author(s):  
R. A. Ribeiro ◽  
P. D. C. Assunção ◽  
E. M. Braga ◽  
A. P. Gerlich

2015 ◽  
Vol 14 (2) ◽  
pp. 37
Author(s):  
E. A. M. Mendonça ◽  
E. M. Braga ◽  
A. S. A. Ferreira ◽  
R. R. Maciel ◽  
T. S. Cabral ◽  
...  

A novel process of welding GMAW-CW (Gas Metal Arc Welding-Cold Wire) had been developed with it resemblance to the GMAW (Gas Metal Arc Welding), the GMAW-CW has an additional wire fed into de weld pool, allowing better deposition rates, while maintaining weld characteristics. However, there is a more complex situation related to the HAZ (Heat Affected Zone) and weld geometry prediction than the GMAW conventional. The welding energy is a high metallurgical important parameter because together with the geometric characteristics of the gasket and the preheat level is decisive in thermal cycles imposed to the material, and therefore in the possible microstructural transformations and behavior of the joint. The behavior of representative curves of thermal cycling reflects important aspects regarding the conditions used in welding. Usually such factors as the type of process, use or non- pre or post- heating, heat input, multipass welding, are able to establish differences in the form of a heat cycle curve. In this work, it was applied the dual ellipsoidal model of heat input, adapted to the GMAW-CW and compared to the same model over the GMAW, using existing experimental data and predicting the HAZ dimensions in function of weld and welding parameters. The results found had less than 10% error from experimental data in a more refined version of the model, whereas the difficulties to predict cold wire addition influences were not trivial.


Sign in / Sign up

Export Citation Format

Share Document