Recurrence formulas for poly-Bernoulli polynomials

Author(s):  
Yasuo Ohno ◽  
Yoshitaka Sasaki
Author(s):  
Yasuo Ohno ◽  
Yoshitaka Sasaki

Recurrence formulas for generalized poly-Bernoulli polynomials are given. The formula gives a positive answer to a question raised by Kaneko. Further, as applications, annihilation formulas for Arakawa-Kaneko type zeta-functions and a counting formula for lonesum matrices of a certain type are also discussed.


Filomat ◽  
2020 ◽  
Vol 34 (2) ◽  
pp. 663-669
Author(s):  
Paçin Dere

The recurrence relations have a very important place for the special polynomials such as q-Appell polynomials. In this paper, we give some recurrence formulas that allow us a better understanding of q-Appell polynomials. We investigate the q-Bernoulli polynomials and q-Euler polynomials, which are q-Appell polynomials, and we obtain their recurrence formulas by using the methods of the q-umbral calculus and the quantum calculus. Our methods include some operators which are quite handy for obtaining relations for the q-Appell polynomials. Especially, some applications of q-derivative operator are used in this work.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 648
Author(s):  
Ghulam Muhiuddin ◽  
Waseem Ahmad Khan ◽  
Ugur Duran ◽  
Deena Al-Kadi

The purpose of this paper is to construct a unified generating function involving the families of the higher-order hypergeometric Bernoulli polynomials and Lagrange–Hermite polynomials. Using the generating function and their functional equations, we investigate some properties of these polynomials. Moreover, we derive several connected formulas and relations including the Miller–Lee polynomials, the Laguerre polynomials, and the Lagrange Hermite–Miller–Lee polynomials.


Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 281
Author(s):  
Ghulam Muhiuddin ◽  
Waseem Ahmad Khan ◽  
Ugur Duran

In the present work, a new extension of the two-variable Fubini polynomials is introduced by means of the polyexponential function, which is called the two-variable type 2 poly-Fubini polynomials. Then, some useful relations including the Stirling numbers of the second and the first kinds, the usual Fubini polynomials, and the higher-order Bernoulli polynomials are derived. Also, some summation formulas and an integral representation for type 2 poly-Fubini polynomials are investigated. Moreover, two-variable unipoly-Fubini polynomials are introduced utilizing the unipoly function, and diverse properties involving integral and derivative properties are attained. Furthermore, some relationships covering the two-variable unipoly-Fubini polynomials, the Stirling numbers of the second and the first kinds, and the Daehee polynomials are acquired.


2014 ◽  
Vol 60 (1) ◽  
pp. 19-36
Author(s):  
Dae San Kim

Abstract We derive eight identities of symmetry in three variables related to generalized twisted Bernoulli polynomials and generalized twisted power sums, both of which are twisted by ramified roots of unity. All of these are new, since there have been results only about identities of symmetry in two variables. The derivations of identities are based on the p-adic integral expression of the generating function for the generalized twisted Bernoulli polynomials and the quotient of p-adic integrals that can be expressed as the exponential generating function for the generalized twisted power sums.


2009 ◽  
Vol 2009 ◽  
pp. 1-8 ◽  
Author(s):  
Taekyun Kim ◽  
Seog-Hoon Rim ◽  
Byungje Lee

By the properties ofp-adic invariant integral onℤp, we establish various identities concerning the generalized Bernoulli numbers and polynomials. From the symmetric properties ofp-adic invariant integral onℤp, we give some interesting relationship between the power sums and the generalized Bernoulli polynomials.


2011 ◽  
Vol 2011 (1) ◽  
Author(s):  
Seog-Hoon Rim ◽  
Abdelmejid Bayad ◽  
Eun-Jung Moon ◽  
Joung-Hee Jin ◽  
Sun-Jung Lee

Sign in / Sign up

Export Citation Format

Share Document