Appendix 2: Elemental Concentrations Measured by INAA in Late Minoan Transport Jars from Kommos

Author(s):  
Patrick Quinn
Author(s):  
John C. Russ ◽  
Nicholas C. Barbi

The rapid growth of interest in attaching energy-dispersive x-ray analysis systems to transmission electron microscopes has centered largely on microanalysis of biological specimens. These are frequently either embedded in plastic or supported by an organic film, which is of great importance as regards stability under the beam since it provides thermal and electrical conductivity from the specimen to the grid.Unfortunately, the supporting medium also produces continuum x-radiation or Bremsstrahlung, which is added to the x-ray spectrum from the sample. It is not difficult to separate the characteristic peaks from the elements in the specimen from the total continuum background, but sometimes it is also necessary to separate the continuum due to the sample from that due to the support. For instance, it is possible to compute relative elemental concentrations in the sample, without standards, based on the relative net characteristic elemental intensities without regard to background; but to calculate absolute concentration, it is necessary to use the background signal itself as a measure of the total excited specimen mass.


Reproduction ◽  
2000 ◽  
pp. 331-336 ◽  
Author(s):  
L Holm ◽  
H Ekwall ◽  
GJ Wishart ◽  
Y Ridderstrale

Sperm storage tubules from the utero-vaginal junction of chickens, quails and turkeys were analysed for calcium and zinc using X-ray microanalysis of ultra-rapidly frozen tissue in a scanning electron microscope. This technique enabled the tubular fluid surrounding the stored spermatozoa and the intracellular content of the cells of the sperm storage tubules to be analysed separately and, by using standards with known concentrations, their elemental concentrations were estimated. The mean (+/- SEM) concentration of calcium in the tubular fluid from chickens, quails and turkeys was 17 +/- 3, 19 +/- 3 and 17 +/- 4 mmol kg(-1) wet weight, respectively. The intracellular calcium concentration of the cells of the tubules did not differ significantly from these values and was also similar in the mucosal epithelial cells of the utero-vaginal junction. Zinc was localized in the cells of turkey sperm storage tubules and tubular fluid, but at low concentrations. No zinc could be detected in corresponding structures from chickens and quails. The concentration of calcium in the tubular fluid is within the range known to inhibit the motility of spermatozoa, supporting this function for calcium during storage. Zinc is known to depress turkey sperm metabolism and it may also be involved in inducing quiescence of spermatozoa during storage in this species.


Aquaculture ◽  
2019 ◽  
Vol 511 ◽  
pp. 734254
Author(s):  
Shazia N. Aslam ◽  
Sharada Navada ◽  
Gisle R. Bye ◽  
Vasco C. Mota ◽  
Bendik Fyhn Terjesen ◽  
...  

Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 208 ◽  
Author(s):  
Chrysoula Betsou ◽  
Evangelia Diapouli ◽  
Evdoxia Tsakiri ◽  
Lambrini Papadopoulou ◽  
Marina Frontasyeva ◽  
...  

Moss biomonitoring is a widely used technique for monitoring the accumulation of trace elements in airborne pollution. A total of one hundred and five samples, mainly of the Hypnum cupressiforme Hedw. moss species, were collected from the Northern Greece during the 2015/2016 European ICP Vegetation (International Cooperative Program on Effects of Air Pollution on Natural Vegetation and Crops) moss survey, which also included samples from the metalipherous area of Skouries. They were analyzed by means of neutron activation analysis, and the elemental concentrations were determined. A positive matrix factorization (PMF) model was applied to the results obtained for source apportionment. According to the PMF model, five sources were identified: soil dust, aged sea salt, road dust, lignite power plants, and a Mn-rich source. The soil dust source contributed the most to almost all samples (46% of elemental concentrations, on average). Two areas with significant impact from anthropogenic activities were identified. In West Macedonia, the emissions from a lignite power plant complex located in the area have caused high concentrations of Ni, V, Cr, and Co. The second most impacted area was Skouries, where mining activities and vehicular traffic (probably related to the mining operations) led to high concentrations of Mn, Ni, V, Co, Sb, and Cr.


2009 ◽  
Vol 73 (6) ◽  
pp. 1027-1032 ◽  
Author(s):  
F. Nestola ◽  
A. Guastoni ◽  
L. Bindi ◽  
L. Secco

AbstractDalnegroite, ideally Tl4Pb2(As12Sb8)Σ20S34, is a new mineral from Lengenbach, Binntal, Switzerland. It occurs as anhedral to subhedral grains up to 200 μm across, closely associated with realgar, pyrite, Sb-rich seligmanite in a gangue of dolomite. Dalnegroite is opaque with a submetallic lustre and shows a brownish-red streak. It is brittle; the Vickers hardness (VHN25) is 87 kg mm-2(range: 69—101) (Mohs hardness ∼3—3½). In reflected light, dalnegroite is highly bireflectant and weakly pleochroic, from white to a slightly greenish-grey. In cross-polarized light, it is highly anisotropic with bluish to green rotation tints and red internal reflections.According to chemical and X-ray diffraction data, dalnegroite appears to be isotypic with chabournéite, Tl5-xPb2x(Sb,As)21-xS34. It is triclinic, probable space groupP1, witha= 16.217(7) Å,b= 42.544(9) Å,c= 8.557(4) Å, α = 95.72(4)°, β = 90.25(4)°, γ = 96.78(4)°,V= 5832(4) Å3,Z= 4.The nine strongest powder-diffraction lines [d(Å) (I/I0) (hkl)] are: 3.927 (100) (10 0); 3.775 (45) (22); 3.685 (45) (60); 3.620 (50) (440); 3.124 (50) (2); 2.929 (60) (42); 2.850 (70) (42); 2.579 (45) (02); 2.097 (60) (024). The mean of 11 electron microprobe analyses gave elemental concentrations as follows: Pb 10.09(1) wt.%, Tl 20.36(1), Sb 23.95(1), As 21.33(8), S 26.16(8), totalling 101.95 wt.%, corresponding to Tl4.15Pb2.03(As11.86Sb8.20)S34. The new mineral is named for Alberto Dal Negro, Professor in Mineralogy and Crystallography at the University of Padova since 1976.


Data in Brief ◽  
2021 ◽  
Vol 35 ◽  
pp. 106901
Author(s):  
Jonathan Richir ◽  
Simon Bray ◽  
Tom McAleese ◽  
Gordon J. Watson

1992 ◽  
Vol 24 (8) ◽  
pp. 390-397 ◽  
Author(s):  
A.M. Greenaway ◽  
A.I. Rankine-Jones

2009 ◽  
Vol 67 (12) ◽  
pp. 2142-2145 ◽  
Author(s):  
C. Oprea ◽  
P.J. Szalanski ◽  
M.V. Gustova ◽  
I.A. Oprea ◽  
V. Buzguta

Sign in / Sign up

Export Citation Format

Share Document