USES OF ELEMENTAL CONCENTRATIONS AND ISOTOPIC COMPOSITIONS TO DETERMINE THE SOURCES OF POSSIBLE MINING-RELATED CONTAMINANTS IN UTAH LAKE, UTAH

2016 ◽  
Author(s):  
Stephen Campbell ◽  
◽  
Joshua W. Jackson ◽  
Steven H. Emerman
Author(s):  
John C. Russ ◽  
Nicholas C. Barbi

The rapid growth of interest in attaching energy-dispersive x-ray analysis systems to transmission electron microscopes has centered largely on microanalysis of biological specimens. These are frequently either embedded in plastic or supported by an organic film, which is of great importance as regards stability under the beam since it provides thermal and electrical conductivity from the specimen to the grid.Unfortunately, the supporting medium also produces continuum x-radiation or Bremsstrahlung, which is added to the x-ray spectrum from the sample. It is not difficult to separate the characteristic peaks from the elements in the specimen from the total continuum background, but sometimes it is also necessary to separate the continuum due to the sample from that due to the support. For instance, it is possible to compute relative elemental concentrations in the sample, without standards, based on the relative net characteristic elemental intensities without regard to background; but to calculate absolute concentration, it is necessary to use the background signal itself as a measure of the total excited specimen mass.


Reproduction ◽  
2000 ◽  
pp. 331-336 ◽  
Author(s):  
L Holm ◽  
H Ekwall ◽  
GJ Wishart ◽  
Y Ridderstrale

Sperm storage tubules from the utero-vaginal junction of chickens, quails and turkeys were analysed for calcium and zinc using X-ray microanalysis of ultra-rapidly frozen tissue in a scanning electron microscope. This technique enabled the tubular fluid surrounding the stored spermatozoa and the intracellular content of the cells of the sperm storage tubules to be analysed separately and, by using standards with known concentrations, their elemental concentrations were estimated. The mean (+/- SEM) concentration of calcium in the tubular fluid from chickens, quails and turkeys was 17 +/- 3, 19 +/- 3 and 17 +/- 4 mmol kg(-1) wet weight, respectively. The intracellular calcium concentration of the cells of the tubules did not differ significantly from these values and was also similar in the mucosal epithelial cells of the utero-vaginal junction. Zinc was localized in the cells of turkey sperm storage tubules and tubular fluid, but at low concentrations. No zinc could be detected in corresponding structures from chickens and quails. The concentration of calcium in the tubular fluid is within the range known to inhibit the motility of spermatozoa, supporting this function for calcium during storage. Zinc is known to depress turkey sperm metabolism and it may also be involved in inducing quiescence of spermatozoa during storage in this species.


Kerntechnik ◽  
2015 ◽  
Vol 80 (4) ◽  
pp. 394-401 ◽  
Author(s):  
S. S. Aleshin ◽  
S. S. Gorodkov ◽  
A. I. Shcherenko

Sign in / Sign up

Export Citation Format

Share Document