Potential Distribution and Environmental Niche of the Black Corals Antipathes galapagensis and Myriopathes panamensis in the Eastern Tropical Pacific1

2021 ◽  
Vol 75 (1) ◽  
Author(s):  
Antonella Lavorato ◽  
Silvia Stranges ◽  
Hector Reyes Bonilla
2008 ◽  
Vol 65 (5) ◽  
pp. 788-794 ◽  
Author(s):  
Thomas W. Therriault ◽  
Leif-Matthias Herborg

Abstract Therriault, T. W., and Herborg, L-M. 2008. Predicting the potential distribution of the vase tunicate Ciona intestinalis in Canadian waters: informing a risk assessment. – ICES Journal of Marine Science, 65: 788–794. A crucial step in characterizing the potential risk posed by non-native species is determining whether a potential invader can establish in the introduced range and what its potential distribution could be. To this end, various environmental models ranging from simple to complex have been applied to predict the potential distribution of an invader, with varying levels of success. Recently, in marine waters, tunicates have received much attention, largely because of their negative impacts on shellfish aquaculture. One of these species is the vase tunicate Ciona intestinalis, which recently has had a negative impact on aquaculture operations in Atlantic Canada and could pose a risk in Pacific Canada. To inform the risk assessment of this species, we evaluated two different types of environmental model. Simple models based on reported temperature or salinity tolerances were relatively uninformative, because almost all waters were deemed suitable. In contrast, a more complex genetic algorithm for rule-set prediction (GARP) environmental niche model, based on documented Canadian occurrence points, provided informative projections of the potential distribution in Canadian waters. In addition to informing risk assessments, these predictions can be used to focus monitoring activities, particularly towards vectors that could transport C. intestinalis to these favourable environments.


Author(s):  
Andrea González Fernández ◽  
Javier Manjarrez ◽  
Uri García-Vázquez ◽  
Maristella D’Addario ◽  
Armando Sunny

Land-use and climate change are affecting the abundance and distribution of species. The Trans-Mexican Volcanic Belt (TMVB) is a very diverse region due to geological history, geographic position and climate, however, is one of the most disturbed regions in Mexico. Reptiles are particularly sensitive to environmental changes due to their low dispersal capacity and thermal ecology. In this study, we define the environmental niche (a part of it; considering climatic, topographic and land use variables) and potential distribution (present and future) of the five Thamnophis species present in TMVB. To do so, we used the maximum entropy modelling software (MAXENT). First, we modeled to select the most important variables to explain the distribution of each species, then we modeled again only with the most important variables and projected these models to the future (year 2050) considering a middle-moderate climate change scenario (rcp45) and the land use and vegetation variables for year 2050, generated with Land Change Modeler based on the land use change occurred between years 2002 and 2011. We also calculated niche overlap between species in environmental space for the present and the future. Percentage of arid vegetation was a negative important variable for all the species and minimum temperature of the coldest month was selected as an important variable in four of the five species. Distance to Abies forest had a high percentage of contribution for T. scalaris and T. scaliger distribution. We found that all Thamnophis species will experience reductions in their distribution ranges in the TMVB in the future, however, for the whole country, the distribution of T. melanogaster seems to increase in the future. T. scalaris is the species that will suffer the biggest reduction in its distribution; the fact that this species is limited by high temperatures and that cannot shift its distribution upward, as it is already distributed in the highest elevations, can be the cause of this dramatic decline. We found a reduction in niche overlap between species in the future, which means a reduction in the range of suitable combination of variables for the species.


Author(s):  
Andrea González Fernández ◽  
Javier Manjarrez ◽  
Uri García-Vázquez ◽  
Maristella D’Addario ◽  
Armando Sunny

Land-use and climate change are affecting the abundance and distribution of species. The Trans-Mexican Volcanic Belt (TMVB) is a very diverse region due to geological history, geographic position and climate, however, is one of the most disturbed regions in Mexico. Reptiles are particularly sensitive to environmental changes due to their low dispersal capacity and thermal ecology. In this study, we define the environmental niche (a part of it; considering climatic, topographic and land use variables) and potential distribution (present and future) of the five Thamnophis species present in TMVB. To do so, we used the maximum entropy modelling software (MAXENT). First, we modeled to select the most important variables to explain the distribution of each species, then we modeled again only with the most important variables and projected these models to the future (year 2050) considering a middle-moderate climate change scenario (rcp45) and the land use and vegetation variables for year 2050, generated with Land Change Modeler based on the land use change occurred between years 2002 and 2011. We also calculated niche overlap between species in environmental space for the present and the future. Percentage of arid vegetation was a negative important variable for all the species and minimum temperature of the coldest month was selected as an important variable in four of the five species. Distance to Abies forest had a high percentage of contribution for T. scalaris and T. scaliger distribution. We found that all Thamnophis species will experience reductions in their distribution ranges in the TMVB in the future, however, for the whole country, the distribution of T. melanogaster seems to increase in the future. T. scalaris is the species that will suffer the biggest reduction in its distribution; the fact that this species is limited by high temperatures and that cannot shift its distribution upward, as it is already distributed in the highest elevations, can be the cause of this dramatic decline. We found a reduction in niche overlap between species in the future, which means a reduction in the range of suitable combination of variables for the species.


2017 ◽  
Author(s):  
Alessandro Mosco

AbstractAimAlthough Mexican Cactaceae are a significative component of Mexican flora and have a relevant economic and ornamental value, the knowledge of the environmental factors characterising their niche is still quite incomplete. This study was aimed at defining the potential distribution and ecological niche of Thelocactus species.MethodsClimatic and environmental variables constraining the distribution of Thelocactus species were identified by means of environmental niche models (ENM) and ordination techniques, and used to generate potential distribution maps. The constructed ENMs were compared to assess the similarities of the ecological niche of Thelocactus species and to know if they share the same ecological niche space.ResultsThe distribution of Thelocactus species was mostly limited by a combination of two environmental factors, isothermality and precipitation of wettest quarter. The null hypothesis of the niche equivalency test was rejected for all paired comparisons between all Thelocactus species except between the pair Thelocactus leucacanthus-Thelocactus hastifer. The results of the niche similarity tests were quite varied, for some species pairs the niche similarities were higher than expected by chance, for others the null hypothesis was rejected, while in other species pairs niches were more similar than expected by chance, but only in one direction.Main conclusionsThe differences in habitat requirements were well documented by the significative differences in the niche ecological space as shown by the equivalency test, while the high percentage of niches that were more similar than expected by chance suggest a high degree of niche conservatism among Thelocactus species. The spatial predictions could serve to improve field design sampling to discover new populations, while niche characteristics could be relevant for improving preservation actions and guiding reintroduction programs for a better conservation of Thelocactus species.


Author(s):  
M. Pan ◽  
J.M. Cowley

Electron microdiffraction patterns, obtained when a small electron probe with diameter of 10-15 Å is directed to run parallel to and outside a flat crystal surface, are sensitive to the surface nature of the crystals. Dynamical diffraction calculations have shown that most of the experimental observations for a flat (100) face of a MgO crystal, such as the streaking of the central spot in the surface normal direction and (100)-type forbidden reflections etc., could be explained satisfactorily by assuming a modified image potential field outside the crystal surface. However the origin of this extended surface potential remains uncertain. A theoretical analysis by Howie et al suggests that the surface image potential should have a form different from above-mentioned image potential and also be smaller by several orders of magnitude. Nevertheless the surface potential distribution may in practice be modified in various ways, such as by the adsorption of a monolayer of gas molecules.


Sign in / Sign up

Export Citation Format

Share Document