scholarly journals Motion Analysis and Power Responses of a Single-buoy Wave Energy Converter Consisting of Double Hydraulic Cylinders

Author(s):  
Biao Li ◽  
Hongtao Gao
2020 ◽  
Vol 103 (3) ◽  
pp. 003685042095015
Author(s):  
Biao Li ◽  
Fangfang Sui ◽  
Bingsong Yang

In the practical engineering applications of multi-body floating wave energy converter (WEC), the traditional geometric optimization is always expensive and time-consuming. This study aim to propose a more efficient geometry optimization strategy with a hinged double-body floating WEC as the study object. The influences of geometric parameters of the buoys on the pitching motion and energy conversion ability are analyzed by numerical simulation. Simulation results show that the resonance state of the pitching motion of the buoys mainly depends on their radius and draft rather than the length; But the length of the buoys, rather than the radius and draft, always has a significant effect on the pitching phase difference of the adjacent buoys. Based on the motion analysis and resonance response, an efficient multi-factor geometry optimization strategy is put forwarded. By the strategy, the sub-optimal and optimal geometrical parameters are solved out quickly at several typical wave conditions of China Seas. The results indicate that the optimal total length of WEC is approximately equal to the wave length. The optimal diameter of buoys is about 25% of the length of buoys. And the optimal draft should attain about 61% of the diameter.


2019 ◽  
Vol 16 (5) ◽  
pp. 172988141987621
Author(s):  
Xiulong Chen ◽  
Deyu Jiang

In order to design an ocean wave energy generator robot, a novel wave energy converter with parallel mechanism is designed and analyzed. A creative thinking that parallel mechanism can be applied to the wave energy converter is presented and verified during the wave energy using process. The design principles of the wave energy converter are given according to wave motion characteristics. Based on the principles, a novel wave energy converter with 4UPS/UP parallel mechanism is designed, which includes the design of the parallel mechanism, hydraulic cylinders, oil circuit, and converter integration. Then the kinematics model and statics model of the wave energy converter with 4UPS/UP parallel mechanism are derived by MATLAB and ADAMS; with these two methods, we found that the errors of rod length, velocity, and acceleration were 1.13 mm, 0.04 mm/s, and 0.38 mm/s2, respectively. Maximum stress error and maximum constraint moment errors were 1.52 N and 0.57 N·mm. So the correctness of the models is verified. This article can not only provide a reference for other types of parallel mechanisms applied to the wave energy converter, but also provide a theoretical foundation for the experimental prototype and practical application of the wave energy converter.


2021 ◽  
Vol 170 ◽  
pp. 1020-1039
Author(s):  
S.D.G.S.P. Gunawardane ◽  
G.A.C.T. Bandara ◽  
Young-Ho Lee

Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 204
Author(s):  
Shao-En Chen ◽  
Ray-Yeng Yang ◽  
Guang-Kai Wu ◽  
Chia-Che Wu

In this paper, a piezoelectric wave-energy converter (PWEC), consisting of a buoy, a frequency up-conversion mechanism, and a piezoelectric power-generator component, is developed. The frequency up-conversion mechanism consists of a gear train and geared-linkage mechanism, which converted lower frequencies of wave motion into higher frequencies of mechanical motion. The slider had a six-period displacement compared to the wave motion and was used to excite the piezoelectric power-generation component. Therefore, the operating frequency of the piezoelectric power-generation component was six times the frequency of the wave motion. The developed, flexible piezoelectric composite films of the generator component were used to generate electrical voltage. The piezoelectric film was composed of a copper/nickel foil as the substrate, lead–zirconium–titanium (PZT) material as the piezoelectric layer, and silver material as an upper-electrode layer. The sol-gel process was used to fabricate the PZT layer. The developed PWEC was tested in the wave flume at the Tainan Hydraulics Laboratory, Taiwan (THL). The maximum height and the minimum period were set to 100 mm and 1 s, respectively. The maximum voltage of the measured value was 2.8 V. The root-mean-square (RMS) voltage was 824 mV, which was measured through connection to an external 495 kΩ resistive load. The average electric power was 1.37 μW.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1731
Author(s):  
Dan Montoya ◽  
Elisabetta Tedeschi ◽  
Luca Castellini ◽  
Tiago Martins

Wave energy is nowadays one of the most promising renewable energy sources; however, wave energy technology has not reached the fully-commercial stage, yet. One key aspect to achieve this goal is to identify an effective control strategy for each selected Wave Energy Converter (WEC), in order to extract the maximum energy from the waves, while respecting the physical constraints of the device. Model Predictive Control (MPC) can inherently satisfy these requirements. Generally, MPC is formulated as a quadratic programming problem with linear constraints (e.g., on position, speed and Power Take-Off (PTO) force). Since, in the most general case, this control technique requires bidirectional power flow between the PTO system and the grid, it has similar characteristics as reactive control. This means that, under some operating conditions, the energy losses may be equivalent, or even larger, than the energy yielded. As many WECs are designed to only allow unidirectional power flow, it is necessary to set nonlinear constraints. This makes the optimization problem significantly more expensive in terms of computational time. This work proposes two MPC control strategies applied to a two-body point absorber that address this issue from two different perspectives: (a) adapting the MPC formulation to passive loading strategy; and (b) adapting linear constraints in the MPC in order to only allow an unidirectional power flow. The results show that the two alternative proposals have similar performance in terms of computational time compared to the regular MPC and obtain considerably more power than the linear passive control, thus proving to be a good option for unidirectional PTO systems.


Sign in / Sign up

Export Citation Format

Share Document