Author(s):  
Yong Zhu ◽  
Bo Chen ◽  
Harry H. Cheng

Ch is an embeddable C/C++ interpreter. It was developed to allow software developers to use one language, anywhere and everywhere, for any programming task. Ch supports C99, a latest C standard ratified in 1999, and contains salient features for two and three dimensional plotting and numerical computing for applications in engineering and science. Developed in Ch, Ch Control System Toolkit provides a control class with member functions for object-based interactive modeling, analysis, and design of control systems. The software package has been widely used in industry to solve practical engineering problems and in universities for instructional improvement. The design and implementation of Ch Control System Toolkit are described in this paper. An application example of control system design and analysis using Ch Control System Toolkit demonstrates its power and simplicity.


2003 ◽  
Vol 3 (4) ◽  
pp. 366-371 ◽  
Author(s):  
Yong Zhu ◽  
Bo Chen ◽  
Harry H. Cheng

Ch is an embeddable C/C++ interpreter. It was developed to allow software developers to use one language, anywhere and everywhere, for any programming task. Ch supports C99, a latest C standard ratified in 1999, and contains salient features for two and three dimensional plotting and numerical computing for applications in engineering and science. Developed in Ch, Ch Control System Toolkit provides a control class with member functions for object-based interactive modeling, analysis, and design of linear time-invariant control systems. The software package, available for downloading on the web, has been widely used in industry to solve practical engineering problems and in universities for instructional improvement. The design and implementation of Ch Control System Toolkit are described in this paper. Two application examples of control system design and analysis using Ch Control System Toolkit demonstrate its power and simplicity.


Author(s):  
Yuan Lin ◽  
Azim Eskandarian

Cooperative Adaptive Cruise Control (CACC) systems which enable vehicle following with tight inter-vehicle head-way offer unique advantage to promote transportation mobility. CACC systems are a step forward the commercially available Adaptive Cruise Control (ACC) systems as they utilize inter-vehicle wireless communication for more advanced control system design. This work studies different wireless communication topologies, i.e., receiving wireless communication from one or more preceding vehicles, and different error-regulation controllers, i.e., linear vs non-linear, for CACC. Through robot following experiments, we show that appropriately designed CACC systems can all achieve vehicle following. For emergency hard braking, however, a non-linear vehicle-following controller which generates strong braking action at short inter-vehicle distances can reduce the risk of collision.


Sign in / Sign up

Export Citation Format

Share Document