scholarly journals Study on axial compression ratio of Seismic Performance of Steel Tube Filled with Steel-reinforced Concrete Composite Column

Author(s):  
Bing Wang ◽  
Xiao Liu ◽  
Pan Ren
2011 ◽  
Vol 71-78 ◽  
pp. 3855-3860
Author(s):  
Xiao Liu ◽  
Min Li

In order to study the bearing capacity and section stress-strain distribute on the steel tube filled with steel-reinforced concrete (STSRC) compression-flexure column, four compression-flexure members of STSRC were tested and theoretical researched. The major parameters of the test were axial compression ratio (n=0.5~0.85). The result of the study showed that: load-deformation() typical curve includes three stages, elastic characteristic, elastic-plastic characteristic, and disruption; Along with the increase of axial compression ratio, the bearing capacity and ductility reduced, but the peak displacement had not change enough; The composite column conformed to plane section, and the larger the axial compression ratio, the further distance of neutral axis of section to the centric axis and closer to the tensile region. ; During the loading process, the steel skeleton in compressive zone yield, but in tensile region never yielded. According to the test results and the limit equilibrium method, the formula for calculating the compression-flexure member of STSRC was established. A good agreement between the calculation results and testing results illustrates, which is feasible to using the calculating formula to calculate the bearing capacity of STSRC.


2013 ◽  
Vol 351-352 ◽  
pp. 687-690
Author(s):  
Ya Feng Xu ◽  
Yue Wang ◽  
Shou Yan Bai

To study the mechanical properties of CFPR steel tube composite columns filled with steel reinforced concrete under different axis compression ratio by adopting 3 specimens of theirs quasistatic tests are carried out. The failure mechanism and test results are analyzed with member of the load-displacement hysteretic curves, skeleton curves. The results show that the axial compression ratio decreases conducive to the improvement of the bearing capacity of specimens. Axial compression ratio has a great influence on the skeleton curve and ductility. Axial compression ratio is higher, the descent stage of the skeleton curve is steeper, the ductility is better. With the increase of the axial compression ratio, the ductility coefficient and energy dissipation capacity is lower.


2011 ◽  
Vol 243-249 ◽  
pp. 15-19 ◽  
Author(s):  
Zhe Li ◽  
Shao Ji Chen ◽  
Jing Xu ◽  
Ye Ni Wang ◽  
Cui Ping Zhang

Compared with reinforced concrete shaped columns, bearing capacity and ductility of steel reinforced concrete shaped columns are significantly improved, so it is with theoretical significance and practical application of value to research. Based on the plain cross section presume, with material cross-section boundary calculation unit, 15 steel reinforced concrete cross-shaped columns(SRCCSC) have made nonlinear full-rang numerical analysis. It demonstrates that the most adverse curvature ductility load angle of SRCCRSC is 45°.Loading angle (), axial compression ratio (n), and the ratio of spacing and diameter of longitudinal reinforcements (s/d) are the principal factors in curvature ductility of SRCCSC subjected to biaxial eccentric compression. Under the most unfavorable loading angle, through a regression analysis of curvature ductility computer data of 150 cross-shaped columns with 8mm stirrups diameter and 150 columns with 10mm stirrups diameter, it can be obtained with the relationship betweenand axial compression ration,s/d, of SRCCSC subjected to biaxial eccentric compression.


2014 ◽  
Vol 488-489 ◽  
pp. 704-707
Author(s):  
Ying Wang ◽  
Miao Li ◽  
Jin Hua Xu ◽  
He Fan

Based on finite element analysis o f concrete filled steel tube beam-column joints under the single axial compression ratio and concrete strength, further research was done to analyze the seismic performance of concrete filled steel tube beam-column joints under different axial compression ratio and concrete strength. Beam-column joint which is connected by bolts with welding extended steel sheets at the beam root was analyzed. The results show that with the increase of axial compression ratio, strength and stiffness degradation of the joint accelerated gradually. Axial compression ratio at 0.3, 0.4 are appropriate values for joints specimen, load-displacement hysteresis curve of joint specimens is relatively plump and shows good seismic performance. Chance of concrete strength also had effect on seismic performance of joint specimen, but in contrast it is not so obviously.


2012 ◽  
Vol 166-169 ◽  
pp. 318-321
Author(s):  
Ya Feng Xu ◽  
Xu Yang ◽  
Xin Wang ◽  
Shou Yan Bai

The article analysis the seismic behaviors of circular steel tube composite column filled with steel reinforced concrete by the large finite element analysis software ABAQUS, adopted the load-displacement method and aimed at studying the mechanical properties of circular steel tube composite columns filled with steel reinforced concrete under horizontal low-cyclic loading, considering the degree of ductility, capacity of energy dissipation by the steel ratio and axial compression ratio. Under different axial compression ratios and steel ratios, the hysteresis curves and skeleton curves are carried out. Along with the increase of steel ratio, the deformation ability and ultimate bearing capacity are raised, but with the increase of axial compression ratio, the deformation ability becomes worse.


2014 ◽  
Vol 501-504 ◽  
pp. 685-689
Author(s):  
Liang Li Xiao ◽  
Xiao Yu ◽  
Jian Wei Han

According to the limit values of axial compression ratio of steel reinforced concrete given by technical specification for steel reinforced concrete composite structure (JGJ138-2001), the axial force of steel reinforced concrete sandwich nodes calculated by MIDAS and the axial bearing capacity calculated by limit values of axial compression ratio are compared with an actual project. The results show that steel concrete columns with designed strength of C60, the strength more than of column concrete strength higher than C50 is the least requirement as to meet the axial compression ratio. The result provides a theoretical basis for the future of safety work and the sandwich joint construction.


2016 ◽  
Vol 20 (9) ◽  
pp. 1299-1314 ◽  
Author(s):  
Hongtao Liu ◽  
Qiushi Yan ◽  
Xiuli Du

Precast reinforced concrete structures are widely used due to many constructional advantages such as faster construction speed, lower construction cost, being environmentally friendly, higher strength, and so on. To study the seismic performance of precast reinforced concrete structures, tests on beam-to-column joints of precast reinforced concrete structures were conducted under low reversed cyclic loading. In total, four joint specimens were produced in this study, including two precast joints and two cast-in-place joints. In addition to the comparison between different types of joints, the axial compression ratio of column was adopted as the main variable in this study. Analysis was carried out on the basis of the observed joint failure mode and relationships derived from the test data such as hysteresis curves, skeleton curves, stiffness degradation curves, energy dissipation capacities, and sleeve joint strain curves. Despite the closeness of energy dissipation capacity between the precast joints and the cast-in-place joints, they had different failure modes. Precast joints feature a relatively concentrated crack distribution in which the limited number of cracks was distributed throughout the plastic zone of the beam. Cast-in-place joints feature more evenly distributed cracks in the plastic zone, especially at the later stage of the loading. The steel slippage of the precast concrete joints was found influenced by the axial compression ratio. Through this study, it is concluded that seismic resistance capacity of precast concrete joint needs to be considered in design and construction and the grouting sleeve splice could be kept away from the hinge zones when precast concrete structures were used in regions of high seismicity. The results in this study can provide a theoretical basis for seismic design of precast reinforced concrete structures, which in turn can promote the application of precast reinforced concrete structures.


2014 ◽  
Vol 670-671 ◽  
pp. 344-348 ◽  
Author(s):  
Wen Feng Chen ◽  
Xiao Hui Yuan ◽  
Bin Li

Three model specimens of alkali-activated slag concrete filled steel tube (AAS-CFST) with different axial compression ratio and steel ratio were designed and tested in the present study. The seismic performance of the structures were evaluated by testing them with combined lateral constant compression and vertical cyclic loads. The structural performance, such as the testing observations, hysteretic behavior, skeleton curve, stiffness degradation, energy dissipation capacity and ductility performance was discussed in detailed. The results show that all the specimens’ damage were bending deformation mode, and the hysteretic curves are relatively smooth. Test data indicated that increased the axial compression ratio improved the load bearing capacity, initial stiffness.


2013 ◽  
Vol 438-439 ◽  
pp. 526-529
Author(s):  
Ri Liang Li ◽  
Ya Feng Xu ◽  
Shou Yan Bai

This paper uses the large-scale finite element analysis software ABAQUS to simulate 12 cross steel reinforced concrete special-shaped columns with the control variables of axial compression ratio and rate of steel bone, and subjected to the monotonic load with 20mm horizontal displacement. 6 columns work under the different axial compression ratio of 0.0, 0.4, 0.5, 0.6, 0.7 and 0.8. Other 6 columns are made of different rates of steel bone with different steel bone thickness of 0mm, 2mm, 4mm and 6mm, 8mm and 10mm, and subject to vertical axial force in axial compression ratio of 0.3. By simulating, we obtain the load - displacement curve of different axial compression ratios and different rates of steel bone, and analyze the effect of the bearing capacity of the cross steel reinforced concrete special-shaped columns in different parameters. The results show that the bearing capacities of the columns decrease with the increasing ratio of axial compression, and increase with the increasing rate of steel bone.


Sign in / Sign up

Export Citation Format

Share Document