scholarly journals General Reflection Coefficients for Acoustic Multipole Sources on guided waves in Isotropic Tubular Structure Liquid Metal Sodium Filled

Author(s):  
Li ZHANG
Vibration ◽  
2020 ◽  
Vol 3 (4) ◽  
pp. 343-356
Author(s):  
Evelyne El Masri ◽  
Timothy Waters ◽  
Neil Ferguson

Steel reinforcement bars (rebars) in concrete structures are inaccessible and not conducive to many inspection methods. This paper proposes a non-invasive technique based on guided waves for detecting localised abnormalities in rebars embedded in concrete beams. The technique is predicated on previously published observations that guided waves are strongly reflected by discontinuities at the frequency at which they begin to propagate, i.e., at cut-on. The reflection coefficient at cut-on is estimated using a simple wave decomposition in which a near-zero wavenumber value is assumed. A simulated study is first carried out to evaluate the technique on a concrete beam featuring four rebars. The wave finite element approach is adopted to model two uniform beams which are coupled via a short, damaged section modelled in conventional finite element analysis. Estimated reflection coefficients arising from the discontinuity are close to the true values at cut-on and independent of frequency elsewhere, so that no prior knowledge of cut-on frequencies is required. Three steel-reinforced concrete beams were fabricated—one uniform and two with localised rebar damage—and reflection coefficients were estimated from measured transfer functions. As predicted, abrupt deviations in the reflection coefficient occurred at cut-on frequencies for both damaged beams.


2014 ◽  
Vol 06 (04) ◽  
pp. 1450035 ◽  
Author(s):  
M. KHARRAT ◽  
M. N. ICHCHOU ◽  
O. BAREILLE ◽  
W. ZHOU

This paper represents the second part of the work that considers the identification and sizing of machined defects in a pipeline. This study deals with the torsional-mode reflection from defects and structural singularities in an industrial pipeline in order to perform the defect sizing. The wave finite element method (WFEM) is used to construct a numerical database of reflection coefficients from rectangular defects by varying thickness, axial and circumferential extents. Calculation is made depending on the frequency. The approximation of defects' sizes is carried out by sweeping the numerical database to find the suitable combination of dimensions for a given defect. The axial and circumferential extents are evaluated by fixed intervals for each possible thickness. Reflections from structural singularities (elbows, concrete blocks, clamps and welds) are also treated by comparing reflection coefficients obtained by the WFEM to those evaluated experimentally. Results show a good agreement for most of the structural singularities but not for the others.


1993 ◽  
Vol 3 (8) ◽  
pp. 1201-1225 ◽  
Author(s):  
G. N�ron de Surgy ◽  
J.-P. Chabrerie ◽  
O. Denoux ◽  
J.-E. Wesfreid

1984 ◽  
Vol 45 (C9) ◽  
pp. C9-179-C9-182
Author(s):  
G. L.R. Mair ◽  
T. Mulvey ◽  
R. G. Forbes

Sign in / Sign up

Export Citation Format

Share Document