An Optimal Water Allocation Model Based on Water Resources Sustainable Assessment in Shanshan Region, Northern China

Author(s):  
Li-Qin LI ◽  
Xin-Min XIE ◽  
Chuan-Jiang WEI ◽  
Jun-Qiu LIU ◽  
Xiang-Nan ZHOU
2013 ◽  
Vol 7 (4) ◽  
pp. 363 ◽  
Author(s):  
Leena Divakar ◽  
Mukand Singh Babel ◽  
Sylvain R. Perret ◽  
Ashim Das Gupta

Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 577 ◽  
Author(s):  
Lizhen Wang ◽  
Yong Zhao ◽  
Yuefei Huang ◽  
Jianhua Wang ◽  
Haihong Li ◽  
...  

Water-rights trade has proved to be an effective method for coping with water shortages through the transfer of water resources between users. The water allocation system is classified into two categories based on information transparency and water rights transaction goals: administered system (AS) and market-based system (MS). A multi-agent and multi-objective optimal allocation model, built on a complex adaptive system, was introduced to direct the distribution of water resources under an AS in the Shiyang River Basin; it was compared with a market-based water rights transaction model using the bulletin-board approach. Ideal economic agent equations played a dominant role in both models. The government and different water users were conceptualized as agents with different behaviors and goals in water allocation. The impact of water-saving cost on optimal water allocation was also considered. The results showed that an agent’s water-saving behavior was incentivized by high transaction prices in the water market. Under the MS, the highest bid in the quotation set had a dominant influence on how trade was conducted. A higher transaction price will, thus, result in a better benefit ratio, and a lower one will result in inactivity in terms of water rights trade. This will significantly impact the economic benefit to the basin.


2019 ◽  
Vol 44 (10) ◽  
pp. 8585-8598 ◽  
Author(s):  
Ijaz Ahmad ◽  
Saqib Manzoor Ahmed ◽  
Sajid Mahmood ◽  
Muhammad Afzal ◽  
Muhammad Yaseen ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2253
Author(s):  
Cheng-Yao Zhang ◽  
Taikan Oki

Competitions and disputes between various human water sectors and environmental flow of the river are exacerbated due to the rapid growth of the economy in Yellow River basin as well as the limited supply of available water resources in recent decades. It is necessary to implement rational and effective management and allocation to alleviate the pressure of water shortage. In order to promote economic development and maintain the ecological balance of the river, both the water allocation to the river environmental system and different human needs should be of concern when making the allocation polices. This study developed a water allocation model based on Nash–Harsanyi bargaining game theory for optimal water resources allocation among agricultural, industrial, domestic, public, and urban ecological water (watering for urban green space) sectors while ensuring the environmental flow requirements of lower reaches. A comprehensive economic evaluation framework is built to assess the economic benefits of different water uses that were taken as the basis of water allocation model. The annual environmental base flow is 7.50 billion m3 in the lower reaches of Yellow River. Moreover, the optimal annual allocations for agricultural, industrial, domestic, public, and urban ecological water use sectors are estimated as 33.7, 6.42, 3.96, 1.75 and 2.68 billion m3, respectively.


2005 ◽  
Vol 5 (3-4) ◽  
pp. 9-16
Author(s):  
C. Kim ◽  
D. Han

The primary objective of this study is to improve the methodology for water allocation focused on efficiency and risk aspects. To attain the primary objective, this study sets up an objective function to maximize social expected benefits, and considers three types of allocation methods. Three types of allocation methods are optimal, proportional, and fixed allocation between regions and service sectors. The results of case study area shows that the fixed allocation method is preferred to the proportional allocation in most cases except that the variance of flow is small with respect to efficiency. Also, efficient and less-risky allocation is simultaneously obtained in some cases, while efficiency and risk show the relation of trade-off in other cases.


Sign in / Sign up

Export Citation Format

Share Document