Multi-level multi-object inter-basin water resources allocation model based on the evolution of coordination degree

Author(s):  
Wen-juan Niu ◽  
Hui-min Wang
2015 ◽  
Vol 15 (4) ◽  
pp. 817-824 ◽  
Author(s):  
Jing Peng ◽  
Ximin Yuan ◽  
Lan Qi ◽  
Qiliang Li

Water resources supply and demand has become a serious problem. Water resources allocation is usually a multi-objective problem, and has been of concern for many researchers. In the north of China, the lack of water resources in the Huai River Basin has handicapped the development of the economy, especially badly in the low-flow period. So it is necessary to study water resources allocation in this area. In this paper, a multi-objective dynamic water resources allocation model has been developed. The developed model took the overall satisfaction of water users in a time interval as the objective function, applied an improved simplex method to solve the calculation, considered the overall users' satisfaction variation with time, and followed the principle that the variation of the system satisfaction within adjacent periods of time must be minimal. The established model was then applied to the Huai River, for the present situation (2010), short-term (2020) and long-term (2030) planning timeframes. From the calculation results, the overall satisfaction in late May and mid September in 2030 was 0.65 and 0.70. After using the model allocation optimization, the overall satisfaction was improved, increasing to 0.78 and 0.79, respectively, thus achieving the dynamic balance optimization of water resources allocation in time and space. This model can provide useful decision support in water resources allocation, when it is used to alleviate water shortages occurring in the low-flow period.


2012 ◽  
Vol 518-523 ◽  
pp. 4216-4221
Author(s):  
Xin Li ◽  
Jun Wan ◽  
Jie Lin Jia ◽  
Qiang Wang

Based on the principles of fairness, efficiency and sustainability, the assessment indicator system of the initial allocation of the river basin water resources is constructed in Analytic Hierarchy Process (AHP) method. By using the AHP model built, Standardization Law and Matlab software, an empirical study of the initial allocation of water resources in Yellow River Basin is got and the allocation scheme is put forward. Research shows that the AHP method is more scientific and rational in the river basin water resources allocation. The fairness and efficiency of fetching water can be reflected by readjustment on original Water resources allocation in nine provinces of Yellow River Basin. It is reasonable of the initial allocation of the Yellow River Basin Water Resources.


2012 ◽  
Vol 212-213 ◽  
pp. 489-492
Author(s):  
Yuan Yuan Gao ◽  
Xin Yi Xu ◽  
Xiao Lin Yin

Formulating and implementing river basin water resources allocation scheme is one of the most crucial measures to promote orderly development, efficient utilization and management, reasonable allocation of water resources. Clarifying water share for each region in a river basin and perfecting water resources allocation system can effectively contribute to achieve the social stability, eliminate the water use contradiction among different regions, realize sustainable water resources utilization and eco-social development, guarantee environment flow. It also conforms to the strictest water resources management system proposed and carried out at present of China. In order to make the readers better understand water allocation done or being done in China, river basin water resources allocation practice was summarized in this study. Institutional arrangements related to water resources allocation in China was also been summed up.


2021 ◽  
Author(s):  
Mulu Sewinet Kerebih ◽  
Ashok Kumar Keshari

Abstract In this study, the land and water resources allocation model was developed to determine optimal cropping patterns and water resources allocations at different rainfall probability exceedance levels (PEs) to ensure maximum agricultural return in the Hormat-Golina valley irrigation command area, Ethiopia. To account the uncertainty of rainfall variability, the monthly dependable rainfall was estimated at three levels of reliability (20, 50 and 80% PEs) which are representing wet, normal and dry seasons based on regional experience. The irrigation water demand which was used as an input to the optimization model was estimated at each level of reliability by using CROPWAT model. The net annual returns of optimal cropping patterns were estimated as 181, 179 and 175 million Ethiopia Birr at 20 %, 50 % and 80 % PEs, respectively. The result of the optimal cropping pattern indicates that, the net annual return of the command area was increased to 45.75%, 45.84% and 47.01% than the Government targeted at 20%, 50% and 80% PEs, respectively. The findings reveal that the optimal land and water resources allocation model is very useful to the planners and decision makers to maximize the agricultural return particularly in areas where land and water resources are limited.


2013 ◽  
Vol 27 (9) ◽  
pp. 3247-3260 ◽  
Author(s):  
Keighobad Jafarzadegan ◽  
Armaghan Abed-Elmdoust ◽  
Reza Kerachian

2012 ◽  
Vol 212-213 ◽  
pp. 113-116
Author(s):  
Chun Xiao ◽  
Dong Guo Shao ◽  
Feng Shun Yang

Aiming at the existing problems in the models of water resources allocation, the concept of friendly allocation of water resources was put forward, and based on the principles of basic water use guarantee, preference of status in quo, fairness and high efficiency, the friendly subfunctions were established and an integrated model of water resources allocation was proposed with maximizing friendly function of water resources allocation. As a case study, the proposed allocation model was applied in Fuhuan River Basin in China, and the results indicated that the model was rational and effective, which provides a new method for water resources allocation in the river basin.


Sign in / Sign up

Export Citation Format

Share Document