scholarly journals Experimental Study on Influence of Fly Ash Content on Splitting Strength of High-titanium Blast Furnace Slag No-sand Concrete

Author(s):  
Wei Chen ◽  
Fei Liao ◽  
Xiaoqian Xu ◽  
Song Zhong ◽  
Wei Wang
2013 ◽  
Vol 723 ◽  
pp. 623-629 ◽  
Author(s):  
Guan Yu Chen ◽  
Wei Hsing Huang

Circulating Fluidized Bed (CFB) Boiler is a means of energy-generating process by burning petroleum coke. In order to avoid blazed petroleum coke with high sulfur content from emitting overdosed sulfur dioxide, limestone is introduced in the boiler for desulfuration. The residue collected from the boiler is called CFB ash. In accordance with different boiler position, CFB ashes can be classified as fly ash and bed ash, and both have similar chemical compositions, with high contents of gypsum and calcium oxide. In this study, CFB ash (fly ash) is mixed with blast furnace slag (BFS) as a substitute for cement in making concrete. It is intended that CFB ashes can be used in concrete and a method for proportioning CFB ash in concrete can be developed. The results show that CFB ash can react with cement to produce hydration products such as Ca(OH)2, and bring the activation of blast furnace slag. The paste strength could be low at later ages, if the CFB ash content is too low. Whereas, if the CFB ash content is over 30%, the paste strength will be low at the early age. Therefore, it is concluded that the cement-granulated blast furnace slag system will show best performance at the CFB ash content between 18% and 22%. In autoclave soundness test shows the CFB ash of the high f-CaO content is easy reaction in the water, and also did not negatively affect the quality of the volume stability.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 912
Author(s):  
Walid Deboucha ◽  
Ibrahim Alachek ◽  
Jean-Patrick Plassiard ◽  
Olivier Plé

The need for retrofitting existing masonry structures is progressively becoming more important due to their continuous deterioration or need to meet the current design requirements of Eurocodes. Textile-Reinforced Mortar (TRM) composite systems have emerged as a sustainable repair methodology suitable for structure retrofitting. Nevertheless, their mechanical performance is still far from being fully investigated. This paper presents an experimental study on the tensile and bond behaviors of a new mortar-based composite consisting of mineral additives, blended cement mortar, and stainless-steel grid. Three different mineral additives (silica fume, fly ash, and blast furnace slag), in binary and ternary systems were used. The experimental study included uniaxial tensile coupon testing on composite specimens and bond tests on composite material applied to clay-brick substrate. The results obtained with the different textile-reinforced cement-based mortars were compared and are discussed here. It was found that, for mortar formulations containing mineral additives—such as fly ash or blast-furnace slag—with high tensile and bond strengths, an adequate adherence between the constituents was obtained. The developed mortar presents mechanical performances equivalent to traditional mortars without additives. The study contributes to the existing knowledge regarding the structural behavior of TRM and promotes the development of a low impact carbon cementitious matrix.


2015 ◽  
Vol 1122 ◽  
pp. 181-184
Author(s):  
Michaela Fiedlerová ◽  
Tomáš Melichar ◽  
Jiří Bydžovský ◽  
Ámos Dufka

Results of an experimental study focused on evaluating the suitability of selected alternative additives and their influence on high temperature resistance of repair mortars based on cement are presented in the article. As an alternative substitute, fly ash and blast furnace slag were selected and added in different dosage up to 10% of cement weight not as a substitution component. Aggregates of amphibolite origin were chosen in regard to the thermal resistance to high temperature.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 596
Author(s):  
Yasuhiro Dosho

To improve the application of low-quality aggregates in structural concrete, this study investigated the effect of multi-purpose mineral admixtures, such as fly ash and ground granulated blast-furnace slag, on the performance of concrete. Accordingly, the primary performance of low-quality recycled aggregate concrete could be improved by varying the replacement ratio of the recycled aggregate and using appropriate mineral admixtures such as fly ash and ground granulated blast-furnace slag. The results show the potential for the use of low-quality aggregate in structural concrete.


Sign in / Sign up

Export Citation Format

Share Document