scholarly journals An Estimation Method for Environmental Friction Based on Body Dynamic Model of ligCaenorhabditis elegansl/ig

2017 ◽  
Vol 4 (1) ◽  
pp. 32
Author(s):  
Zu Soh ◽  
Michiyo Suzuki ◽  
Toshio Tsuji
2021 ◽  
Vol 9 (11) ◽  
pp. 1221
Author(s):  
Weixin Zhang ◽  
Ye Li ◽  
Yulei Liao ◽  
Qi Jia ◽  
Kaiwen Pan

The wave-driven catamaran is a small surface vehicle driven by ocean waves. It consists of a hull and hydrofoils, and has a multi-body dynamic structure. The process of moving from static state to autonomous navigation driven by ocean waves is called “self-propulsion”, and reflects the ability of the wave-driven catamaran to absorb oceanic wave energy. Considering the importance of the design of the wave-driven catamaran, its self-propulsion performance should be comprehensively analysed. However, the wave-driven catamaran’s multi-body dynamic structure, unpredictable dynamic and kinematic responses driven by waves make it difficult to analyse its self-propulsion performance. In this paper, firstly, a multi-body dynamic model is established for wave-driven catamaran. Secondly, a two-phase numerical flow field containing water and air is established. Thirdly, a numerical simulation method for the self-propulsion process of the wave-driven catamaran is proposed by combining the multi-body dynamic model with a numerical flow field. Through numerical simulation, the hydrodynamic response, including the thrust of the hydrofoils, the resistance of the hull and the sailing velocity of the wave-driven catamaran are identified and comprehensively analysed. Lastly, the accuracy of the numerical simulation results is verified through a self-propulsion test in a towing tank. In contrast with previous research, this method combines multi-body dynamics with computational fluid dynamics (CFD) to avoid errors caused by artificially setting the motion mode of the catamaran, and calculates the real velocity of the catamaran.


2019 ◽  
Vol 287 ◽  
pp. 03005
Author(s):  
Jan Furch ◽  
Cao Vu Tran

The combat vehicle gearbox, during the operation, generates vibration signals being related to the technical condition of gearbox. The analysis of the vibration signal could be used to determine accurately the behaviour of gearbox. Along with the development of the computer technology, the multi-body dynamic solution has been used widely to simulate, analyse, and determine the technical condition of gearbox. The purpose of this paper is to introduce the dynamic model of combat vehicle gearbox, and the simulation process based on the multi-body dynamic software, namely MSC.ADAMS. This proposed model allows the detection of failure conditions of individual gears and bearings in the gearbox. In this way, the fault conditions of the individual transmission components are identified. In the future, we would like to include a material wear module in the model, and we would like to model the life of the gearbox. We assume that we would also carry out accelerated tests of the gearbox to verify validity.


Author(s):  
Yue-Qing Yu ◽  
Qian Li ◽  
Qi-Ping Xu

An intensive study on the dynamic modeling and analysis of compliant mechanisms is presented in this paper based on the pseudo-rigid-body model. The pseudo-rigid-body dynamic model with single degree-of-freedom is proposed at first and the dynamic equation of the 1R pseudo-rigid-body dynamic model for a flexural beam is presented briefly. The pseudo-rigid-body dynamic models with multi-degrees-of-freedom are then derived in detail. The dynamic equations of the 2R pseudo-rigid-body dynamic model and 3R pseudo-rigid-body dynamic model for the flexural beams are obtained using Lagrange equation. Numerical investigations on the natural frequencies and dynamic responses of the three pseudo-rigid-body dynamic models are made. The effectiveness and superiority of the pseudo-rigid-body dynamic model has been shown by comparing with the finite element analysis method. An example of a compliant parallel-guiding mechanism is presented to investigate the dynamic behavior of the mechanism using the 2R pseudo-rigid-body dynamic model.


2013 ◽  
Vol 328 ◽  
pp. 589-593
Author(s):  
Li Hua Wang ◽  
An Ning Huang ◽  
Guang Wei Liu

There are higher requirements on running stability of the rail vehicle with the incensement of the running speed. The running stability is one of the important indicators of evaluating the dynamic performance of the rail vehicle. In this paper, the whole multi-body dynamic model of the rail vehicle was proposed based on the theory of multi-body dynamics in the software of Simpack. And the lateral and vertical vibrate accelerations of the rail vehicle were simulated when it was inspired by the track irregularities. Then the running stabilities of the rail vehicle were estimated accurately. This will propose basis on the improving design and optimization design of the whole rail vehicle.


2013 ◽  
Vol 427-429 ◽  
pp. 266-270
Author(s):  
Yue Gang Wang ◽  
Zhao Yang Zuo ◽  
Jian Guo Wu ◽  
Hai Bo Li

In order to study the dynamic characteristics of centrifuge facility-vibration shaker system, In the establishment of centrifuge facility-vibration shaker system multi-body dynamic model based on virtual mocking technology, the virtual dynamic model of the entire centrifuge facility-vibration shaker system more close to reality is built up by the transmission of finite element of flexible centrifuge arm. This paper describes how to build the 3-D virtual prototype of centrifuge facility-vibration shaker system by using Pro/e and ADAMS software, and how to create the modal neutral file of the centrifuge arm by using ANSYS software. Considering the system as a rigid-flexible coupling system, the dynamical simulation is carried out, and the results are benefit for the further research of its kinetic behavior, dynamic and variable characteristics basis and the design of such system.


Sign in / Sign up

Export Citation Format

Share Document