scholarly journals A New Method for Ranking the Most Influential Node in Complex Networks

Author(s):  
Zhisong Wang
Author(s):  
Shi Dong ◽  
Wengang Zhou

Influential node identification plays an important role in optimizing network structure. Many measures and identification methods are proposed for this purpose. However, the current network system is more complex, the existing methods are difficult to deal with these networks. In this paper, several basic measures are introduced and discussed and we propose an improved influential nodes identification method that adopts the hybrid mechanism of information entropy and weighted degree of edge to improve the accuracy of identification (Hm-shell). Our proposed method is evaluated by comparing with nine algorithms in nine datasets. Theoretical analysis and experimental results on real datasets show that our method outperforms other methods on performance.


2010 ◽  
Vol 20 (02) ◽  
pp. 361-367 ◽  
Author(s):  
C. O. DORSO ◽  
A. D. MEDUS

The problem of community detection is relevant in many disciplines of science. A community is usually defined, in a qualitative way, as a subset of nodes of a network which are more connected among themselves than to the rest of the network. In this article, we introduce a new method for community detection in complex networks. We define new merit factors based on the weak and strong community definitions formulated by Radicchi et al. [2004] and we show that this local definition properly describes the communities observed experimentally in two typical social networks.


2018 ◽  
Vol 32 (19) ◽  
pp. 1850216 ◽  
Author(s):  
Pingle Yang ◽  
Xin Liu ◽  
Guiqiong Xu

Identifying the influential nodes in complex networks is a challenging and significant research topic. Though various centrality measures of complex networks have been developed for addressing the problem, they all have some disadvantages and limitations. To make use of the advantages of different centrality measures, one can regard influential node identification as a multi-attribute decision-making problem. In this paper, a dynamic weighted Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is developed. The key idea is to assign the appropriate weight to each attribute dynamically, based on the grey relational analysis method and the Susceptible–Infected–Recovered (SIR) model. The effectiveness of the proposed method is demonstrated by applications to three actual networks, which indicates that our method has better performance than single indicator methods and the original weighted TOPSIS method.


Algorithms ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 280
Author(s):  
Jinfang Sheng ◽  
Jiafu Zhu ◽  
Yayun Wang ◽  
Bin Wang ◽  
Zheng’ang Hou

The real world contains many kinds of complex network. Using influence nodes in complex networks can promote or inhibit the spread of information. Identifying influential nodes has become a hot topic around the world. Most of the existing algorithms used for influential node identification are based on the structure of the network such as the degree of the nodes. However, the attribute information of nodes also affects the ranking of nodes’ influence. In this paper, we consider both the attribute information between nodes and the structure of networks. Therefore, the similarity ratio, based on attribute information, and the degree ratio, based on structure derived from trust-value, are proposed. The trust–PageRank (TPR) algorithm is proposed to identify influential nodes in complex networks. Finally, several real networks from different fields are selected for experiments. Compared with some existing algorithms, the results suggest that TPR more rationally and effectively identifies the influential nodes in networks.


2017 ◽  
Vol 16 (05) ◽  
pp. 1359-1385 ◽  
Author(s):  
Weihua Zhan ◽  
Jihong Guan ◽  
Zhongzhi Zhang

Extracting the hierarchical organization of networks is currently a pressing task for understanding complex networked systems. The hierarchy of a network is essentially defined by the heterogeneity of link densities of communities at different scales. Here, we define a top-level partition (TLP) as a bipartition of the network (or a sub-network) such that no top-level community (TLC) runs across the two parts. It has been found that a TLP generally has a higher modularity than a non-top-level (TLP) partition when their TLCs have similar sizes and when the link densities of neighboring levels are well separated from each other. A spectral TLP procedure is proposed here to search for TLPs of a network (or sub-network). To extract the hierarchical organization of large complex networks, an algorithm called TLPA has been developed based on the TLP. Experiments have shown that the method developed in this research extract hierarchy accurately from network data.


2010 ◽  
Vol 20 (03) ◽  
pp. 827-833
Author(s):  
I. LEYVA ◽  
I. SENDIÑA-NADAL ◽  
J. A. ALMENDRAL ◽  
J. M. BULDÚ ◽  
D. LI ◽  
...  

The response of a random and modular network to the simultaneous presence of two frequencies is considered. The competition for controlling the dynamics of the network results in different behaviors, such as frequency changes or permanent synchronization frustration, which can be directly related to the network structure. From these observations, we propose a new method for detecting overlapping communities in structured networks.


2017 ◽  
Vol 28 (03) ◽  
pp. 1750041
Author(s):  
Jianwei Wang ◽  
Xue Wang ◽  
Lin Cai ◽  
Chengzhang Ni ◽  
Wei Xie ◽  
...  

We study the problem of universal resilience patterns in complex networks against cascading failures. We revise the classical betweenness method and overcome its limitation of quantifying the load in cascading model. Considering that the generated load by all nodes should be equal to the transported one by all edges in the whole network, we propose a new method to quantify the load on an edge and construct a simple cascading model. By attacking the edge with the highest load, we show that, if the flow between two nodes is transported along the shortest paths between them, then the resilience of some networks against cascading failures inversely decreases with the enhancement of the capacity of every edge, i.e. the more capacity is not always better. We also observe the abnormal fluctuation of the additional load that exceeds the capacity of each edge. By a simple graph, we analyze the propagation of cascading failures step by step, and give a reasonable explanation of the abnormal fluctuation of cascading dynamics.


Sign in / Sign up

Export Citation Format

Share Document