scholarly journals An Improved Gray Multi-focus Image Fusion Algorithm Based on Dual-Tree Complex Wavelet Transform

Author(s):  
Jianyu Wang ◽  
Xiaojun Liu
2017 ◽  
Vol 11 (2) ◽  
pp. 163-169 ◽  
Author(s):  
Yan Sun ◽  
Ling Jiang

This paper puts forward a new color multi-focus image fusion algorithm based on fuzzy theory and dual-tree complex wavelet transform for the purpose of removing uncertainty when choosing sub-band coefficients in the smooth regions. Luminance component is the weighted average of the three color channels in the IHS color space and it is not sensitive to noise. According to the characteristics, luminance component was chosen as the measurement to calculate the focus degree. After separating the luminance component and spectrum component, Fisher classification and fuzzy theory were chosen as the fusion rules to conduct the choice of the coefficients after the dual-tree complex wavelet transform. So fusion color image could keep the natural color information as much as possible. This method could solve the problem of color distortion in the traditional algorithms. According to the simulation results, the proposed algorithm obtained better visual effects and objective quantitative indicators.


2017 ◽  
Vol 10 (03) ◽  
pp. 1750001 ◽  
Author(s):  
Abdallah Bengueddoudj ◽  
Zoubeida Messali ◽  
Volodymyr Mosorov

In this paper, we propose a new image fusion algorithm based on two-dimensional Scale-Mixing Complex Wavelet Transform (2D-SMCWT). The fusion of the detail 2D-SMCWT coefficients is performed via a Bayesian Maximum a Posteriori (MAP) approach by considering a trivariate statistical model for the local neighboring of 2D-SMCWT coefficients. For the approximation coefficients, a new fusion rule based on the Principal Component Analysis (PCA) is applied. We conduct several experiments using three different groups of multimodal medical images to evaluate the performance of the proposed method. The obtained results prove the superiority of the proposed method over the state of the art fusion methods in terms of visual quality and several commonly used metrics. Robustness of the proposed method is further tested against different types of noise. The plots of fusion metrics establish the accuracy of the proposed fusion method.


2021 ◽  
pp. 3228-3236
Author(s):  
Nada Jasim Habeeb

Combining multi-model images of the same scene that have different focus distances can produce clearer and sharper images with a larger depth of field. Most available image fusion algorithms are superior in results. However, they did not take into account the focus of the image. In this paper a fusion method is proposed to increase the focus of the fused image and to achieve highest quality image using the suggested focusing filter and Dual Tree-Complex Wavelet Transform. The focusing filter consist of a combination of two filters, which are Wiener filter and a sharpening filter. This filter is used before the fusion operation using Dual Tree-Complex Wavelet Transform. The common fusion rules, which are the average-fusion rule and maximum-fusion rule, were used to obtain the fused image. In the experiment, using the focus operators, the performance of the proposed fusion algorithm was compared with the existing algorithms. The results showed that the proposed method is better than these fusion methods in terms of the focus and quality. 


Oncology ◽  
2017 ◽  
pp. 519-541
Author(s):  
Satishkumar S. Chavan ◽  
Sanjay N. Talbar

The process of enriching the important details from various modality medical images by combining them into single image is called multimodality medical image fusion. It aids physicians in terms of better visualization, more accurate diagnosis and appropriate treatment plan for the cancer patient. The combined fused image is the result of merging of anatomical and physiological variations. It allows accurate localization of cancer tissues and more helpful for estimation of target volume for radiation. The details from both modalities (CT and MRI) are extracted in frequency domain by applying various transforms and combined them using variety of fusion rules to achieve the best quality of images. The performance and effectiveness of each transform on fusion results is evaluated subjectively as well as objectively. The fused images by algorithms in which feature extraction is achieved by M-Band Wavelet Transform and Daubechies Complex Wavelet Transform are superior over other frequency domain algorithms as per subjective and objective analysis.


Sign in / Sign up

Export Citation Format

Share Document