scholarly journals The Finite Element Analysis of the Stress Field in the Core of Continuous Casting Slab

Author(s):  
Qiang Yin ◽  
Gongfa Li
2011 ◽  
Vol 368-373 ◽  
pp. 489-494 ◽  
Author(s):  
Xu Lin Tang ◽  
Jian Cai ◽  
Qing Jun Chen ◽  
An He ◽  
Chun Yang

In order to study the mechanical behavior of the joint between concrete filled steel tubular column and beam with discontinuous column tube at the joint zone under axial pressure, the finite element analysis software ANSYS is adopted for parametric analysis and the analysis results are compared with experimental ones. The principal compressive stress is mainly transmitted by the inside area of the joint which is subjected to local compression if it is low, but extends to more outside areas of the joint if it is high. The radial compressive stress, which is the confined stress of the ring beam to the core concrete of the joint, keeps the same as that the width of the ring beam equal to the diameter of the core area of the joint. The vertical strain on the edge of the joint, which would lead to horizontal annular cracks in the side face of the ring beam, changes from tension in the whole height to tension only in the top part and compression in the lower part of the joint, which is consistent with the experimental phenomenon.


1973 ◽  
Vol 10 (2) ◽  
pp. 129-144 ◽  
Author(s):  
N. A. Skermer

A simple trapezoidal element is presented for use in the analysis of thin core rockfill dams with nonlinear soil parameters. Handling of nonlinear soil parameters and allowance for the intermediate principal stress in plane strain problems are discussed. The analysis of El Infiernillo rockfill dam using trapezoids in the core and transitions, and variable Young's modulus and Poisson's ratio, reveals the transfer of stress that takes place around the core. Comparisons of strain observations at El Infiernillo Dam with results from the analysis are good, except in zones of compacted rockfill. It appears that the actual stiffness of compacted granular fills may be seriously underestimated, if soil parameters are based on data obtained from triaxial tests on normally consolidated samples. A fundamental understanding of soil deformation behavior would lead to an improvement in the finite element analysis of soil structure.


2012 ◽  
Vol 229-231 ◽  
pp. 919-922
Author(s):  
Bao Dong Bai ◽  
Guo Hui Yang ◽  
Bing Yin Qu ◽  
Jian Zhang

In this paper, the modal analysis was carried out on the core and cavity of a 160KVA dry-type transformer based on the finite element analysis software of ANSYS. And the simulation results of the natural frequencies and modal shapes were obtained, which provided a theoretical guidance to the design of the transformer structure, and were meaningful to reduce the vibration and noise level of the transformer.


2012 ◽  
Vol 253-255 ◽  
pp. 2107-2112
Author(s):  
Jian Min Li ◽  
Chuan Yang Sun ◽  
Zhang Cheng Yang ◽  
Zu Xi Yi

For the problem that car sub-frame constraint connection complex and effective load more difficult to determine, using finite element and multi-body dynamics ADAMS co-simulation method, Analyzed on a Volkswagen vehicle sub-frame, obtained the accurate load on the sub-frame which are used by engine suspension. The finite element analysis results show that engine load is the greatest impact on the sub-frame stress field, which can be reduced by increasing the area of engine and the sub-frame contacting, thereby prolong the life of sub-frame.


2009 ◽  
Vol 24 (3) ◽  
pp. 704-718 ◽  
Author(s):  
Gang Feng ◽  
Shaoxing Qu ◽  
Yonggang Huang ◽  
William D. Nix

In our previous paper [Feng et al., Acta Mater.55, 2929 (2007)], an analytical model is proposed to estimate the stress field around an elastoplastic indentation/contact, matching nicely with the finite element analysis. The model is related to an embedded center of dilatation (ECD) in a half-space. In this paper, we focus on determining the ECD strength B* and the ECD depth ξ. By matching an expanding cavity model and the ECD model, we find that B* ≈ Yc3/6 and ξ ≈ 0.4c, where Y is the yield strength and c is the plastic zone radius. We provide a method to predict Y, c, and thereby B* as well as ξ through nanoindentation data, and we also demonstrate that pileup is the physical reason for the existence of the upper limit for the ratio of hardness to Y. Thus, our ECD model is completed by combining our previous paper (the analytical expression) and this paper (the essential parameters).


1985 ◽  
Vol 13 (3) ◽  
pp. 127-146 ◽  
Author(s):  
R. Prabhakaran

Abstract The finite element method, which is a numerical discretization technique for obtaining approximate solutions to complex physical problems, is accepted in many industries as the primary tool for structural analysis. Computer graphics is an essential ingredient of the finite element analysis process. The use of interactive graphics techniques for analysis of tires is discussed in this presentation. The features and capabilities of the program used for pre- and post-processing for finite element analysis at GenCorp are included.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


2018 ◽  
Vol 55 (4) ◽  
pp. 666-675
Author(s):  
Mihaela Tanase ◽  
Dan Florin Nitoi ◽  
Marina Melescanu Imre ◽  
Dorin Ionescu ◽  
Laura Raducu ◽  
...  

The purpose of this study was to determinate , using the Finite Element Analysis Method, the mechanical stress in a solid body , temporary molar restored with the self-curing GC material. The originality of our study consisted in using an accurate structural model and applying a concentrated force and a uniformly distributed pressure. Molar structure was meshed in a Solid Type 45 and the output data were obtained using the ANSYS software. The practical predictions can be made about the behavior of different restorations materials.


Sign in / Sign up

Export Citation Format

Share Document