scholarly journals Numerical Investigation of Heat Transfer Coefficient in Ribbed Rectangular Duct with Various Shaped Ribs and Different Coolants

Author(s):  
N.M. Elwekeel Fifi ◽  
M.M. Abdala Antar ◽  
Zheng Qun
1995 ◽  
Vol 117 (2) ◽  
pp. 418-424 ◽  
Author(s):  
Q. Lu ◽  
N. V. Suryanarayana

Condensation of a vapor flow inside a horizontal rectangular duct, using the bottom plate as the only condensing surface, was experimentally investigated. The experimental measurements included condensate film thickness and heat transfer coefficients with R-113 and FC-72. The condensate film thickness, measured with an ultrasonic transducer, was used to obtain the local heat transfer coefficient. The heat transfer coefficient increased with increasing inlet vapor velocity. The rate of increase was enhanced noticeably after the appearance of interfacial waves. Within the limited range of the experimental variables, a correlation between St and RegL was developed by a linear regression analysis. However, because of the effect of the interfacial waves, instead of a single correlation for the entire range of RegL, two separate equations (one for the wave-free regime and another for the regime with waves) were found. Analytical predictions of heat transfer rates in the annular condensation regime require the proper modeling of the interfacial shear stress. A properly validated interfacial shear stress model with condensation is not yet available. The measurement of condensate film thickness at several axial locations opens the door for determining the local interfacial stress and, hence, a model for the interfacial shear stress.


2009 ◽  
Vol 132 (1) ◽  
Author(s):  
Sebastian Spring ◽  
Diane Lauffer ◽  
Bernhard Weigand ◽  
Matthias Hase

A combined experimental and numerical investigation of the heat transfer characteristics inside an impingement cooled combustor liner heat shield has been conducted. Due to the complexity and irregularity of heat shield configurations, standard correlations for regular impingement fields are insufficient and detailed investigations of local heat transfer enhancement are required. The experiments were carried out in a perspex model of the heat shield using a transient liquid crystal method. Scaling of the model allowed to achieve jet Reynolds numbers of up to Rej=34,000 without compressibility effects. The local air temperature was measured at several positions within the model to account for an exact evaluation of the heat transfer coefficient. Analysis focused on the local heat transfer distribution along the heat shield target plate, side rims, and central bolt recess. The results were compared with values predicted by a standard correlation for a regular impingement array. The comparison exhibited large differences. While local values were up to three times larger than the reference value, the average heat transfer coefficient was approximately 25% lower. This emphasized that standard correlations are not suitable for the design of complex impingement cooling pattern. For thermal optimization the detailed knowledge of the local variation of the heat transfer coefficient is essential. From the present configuration, some concepts for possible optimization were derived. Complementary numerical simulations were carried out using the commercial computational fluid dynamics (CFD) code ANSYS CFX. The motivation was to evaluate whether CFD can be used as an engineering design tool in the optimization of the heat shield configuration. For this, a validation of the numerical results was required, which for the present configuration was achieved by determining the degree of accuracy to which the measured heat transfer rates could be computed. The predictions showed good agreement with the experimental results, both for the local Nusselt number distributions as well as for averaged values. Some overprediction occurred in the stagnation regions, however, the impact on overall heat transfer coefficients was low and average deviations between numerics and experiments were in the order of only 5–20%. The numerical investigation showed that contemporary CFD codes can be used as suitable means in the thermal design process.


Author(s):  
T. S. Mogaji ◽  
O. A. Sogbesan ◽  
Tien-Chien Jen

Abstract This study presents numerical investigation results of heat flux effect on pool boiling heat transfer enhancement during nucleate boiling heat transfer of water. The simulation was performed for five different heated surfaces such as: brass, copper, mild steel, stainless steel and aluminum using ANSYS simulation software at 1 atmospheric pressure. The samples were heated in a domain developed for bubble growth during nucleate boiling process under the same operational condition of applied heat flux ranged from 100 to 1000 kW/m2 and their corresponding heat transfer coefficient was obtained numerically. Obtained experimental data of other authors from the open literature result is in close agreement with the simulated data, thus confirming the validity of the CFD simulation method used in this study. It is found that heat transfer coefficient increases with increasing heat flux. The results revealed that in comparison to other materials tested, better heat transfer performance up to 38.5% and 7.11% is observed for aluminum and brass at lower superheated temperature difference conditions of 6.96K and 14.01K respectively. This behavior indicates better bubble development and detachment capability of these heating surface materials and could be used in improving the performance of thermal devices toward producing compact and miniaturized equipment.


Author(s):  
E. Burberi ◽  
D. Massini ◽  
L. Cocchi ◽  
L. Mazzei ◽  
A. Andreini ◽  
...  

Increasing turbine inlet temperature is one of the main strategies used to accomplish the demands of increased performance of modern gas turbines. As a consequence, optimization of the cooling system is of paramount importance in gas turbine development. Leading edge represents a critical part of cooled nozzles and blades, given the presence of the hot gases stagnation point and the unfavourable geometry for cooling. This paper reports the results of a numerical investigation aimed at assessing the rotation effects on the heat transfer distribution in a realistic leading edge internal cooling system of a high pressure gas turbine blade. The numerical investigation was carried out in order to support and to allow an in-depth understanding of the results obtained in a parallel experimental campaign. The model is composed of a trapezoidal feeding channel which provides air to the cold bridge system by means of three large racetrack-shaped holes, generating coolant impingement on the internal concave leading edge surface, whereas four big fins assure the jets confinement. Air is then extracted through 4 rows of 6 holes reproducing the external cooling system composed of shower-head and film cooling holes. Experiments were performed in static and rotating conditions replicating the typical range of jet Reynolds number (Rej) from 10000 to 40000 and Rotation number (Roj) up to 0.05, for three crossflow cases representative of the working condition that can be found at blade tip, midspan and hub, respectively. Experimental results in terms of flow field measurements on several internal planes and heat transfer coefficient on the LE internal surface have been performed on two analogous experimental campaigns at University of Udine and University of Florence respectively. Hybrid RANS-LES models were used for the simulations, such as Scale Adaptive Simulation (SAS) and Detached Eddy Simulation (DES), given their ability to resolve the complex flow field associated with jet impingement. Numerical flow field results are reported in terms of both jet velocity profiles and 2D vector plots on symmetry and transversal internal planes, while the heat transfer coefficient distributions are presented as detailed 2D maps together with radial and tangential averaged Nusselt number profiles. A fairly good agreement with experimental measurements is observed, which represent a validation of the adopted computational model. As a consequence, the computed aerodynamic and thermal fields also allow an in-depth interpretation of the experimental results.


Sign in / Sign up

Export Citation Format

Share Document