scholarly journals Substation communication network architecture evaluation Based on the destructive nature of reliability and survivability

Author(s):  
Meng Yin ◽  
Jie Shen ◽  
Min Zhu ◽  
Zhifang Wang
Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4895
Author(s):  
Maurício R. Silva ◽  
Elitelma S. Souza ◽  
Pablo J. Alsina ◽  
Deyvid L. Leite ◽  
Mateus R. Morais ◽  
...  

This paper presents a communication network for a squadron of unmanned aerial vehicles (UAVs) to be used in the scanning rocket impact area for Barreira do Inferno Launch Center—CLBI (Rio Grande do Norte, Brazil), aiming at detecting intruder boats. The main features of communication networks associated with multi-UAV systems are presented. This system sends information through Wireless Sensor Networks (WSN). After comparing and analyzing area scanning strategies, it presents the specification of a data communication network architecture for a squadron of UAVs within a sensor network using XBee Pro 900HP S3B modules. A brief description is made about the initial information from the construction of the system. The embedded hardware and the design procedure of a dedicated communication antenna to the XBee modules are presented. In order to evaluate the performance of the proposed architecture in terms of robustness and reliability, a set of experimental tests in different communication scenarios is carried out. Network management software is employed to measure the throughput, packet loss and other performance indicators in the communication links between the different network nodes. Experimental results allow verifying the quality and performance of the network nodes, as well as the reliability of the communication links, assessing signal received quality, range and latency.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5527
Author(s):  
Ali M. Eltamaly ◽  
Mohamed A. Ahmed ◽  
Majed A. Alotaibi ◽  
Abdulrahman I. Alolah ◽  
Young-Chon Kim

The grid integration of large scale photovoltaic (PV) power plants represents many challenging tasks for system stability, reliability and power quality due to the intermittent nature of solar radiation and the site accessibility issues where most PV power plants are located over a wide area. In order to enable real-time monitoring and control of large scale PV power plants, reliable two-way communications with low latency are required which provide accurate information for the electrical and environmental parameters as well as enabling the system operator to evaluate the overall performance and identify any abnormal conditions and faults. This work aims to design a communication network architecture for the remote monitoring of large-scale PV power plants based on the IEC 61850 Standard. The proposed architecture consists of three layers: the PV power system layer, the communication network layer, and the application layer. The PV power system layer consists of solar arrays, inverters, feeders, buses, a substation, and a control center. Monitoring parameters are classified into different categories including electrical measurements, status information, and meteorological data. This work considers the future plan of PV power plants in Saudi Arabia. In order to evaluate the performance of the communication network for local and remote monitoring, the OPNET Modeler is used for network modeling and simulation, and critical parameters such as network topology, link capacity, and latency are investigated and discussed. This work contributes to the design of reliable monitoring and communication of large-scale PV power plants.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 679 ◽  
Author(s):  
Hosam Hittini ◽  
Atef Abdrabou ◽  
Liren Zhang

In this paper, a false data injection prevention protocol (FDIPP) for smart grid distribution systems is proposed. The protocol is designed to work over a novel hierarchical communication network architecture that matches the distribution system hierarchy and its vast number of entities. The proposed protocol guarantees both system and data integrity via preventing packet injection, duplication, alteration, and rogue node access. Therefore, it prevents service disruption or damaging power network assets due to drawing the wrong conclusions about the current operating status of the power grid. Moreover, the impact of the FDIPP protocol on communication network performance is studied using intensive computer simulations. The simulation study shows that the proposed communication architecture is scalable and meets the packet delay requirements of inter-substation communication as mandated by IEC 61850-90-1 with a minimal packet loss while the security overhead of FDIPP is taken into account.


Sign in / Sign up

Export Citation Format

Share Document