scholarly journals Remarks on space-time behavior in the Cauchy problems of the heat equation and the curvature flow equation with mildly oscillating initial values

2014 ◽  
Vol 37 (1) ◽  
pp. 16-23
Author(s):  
Hiroki Yagisita
2020 ◽  
Vol 20 (2) ◽  
pp. 311-337
Author(s):  
Hattab Mouajria ◽  
Slim Tayachi ◽  
Fred B. Weissler

AbstractIn this paper, we study global well-posedness and long-time asymptotic behavior of solutions to the nonlinear heat equation with absorption, {u_{t}-\Delta u+\lvert u\rvert^{\alpha}u=0}, where {u=u(t,x)\in\mathbb{R}}, {(t,x)\in(0,\infty)\times\mathbb{R}^{N}} and {\alpha>0}. We focus particularly on highly singular initial values which are antisymmetric with respect to the variables {x_{1},x_{2},\ldots,x_{m}} for some {m\in\{1,2,\ldots,N\}}, such as {u_{0}=(-1)^{m}\partial_{1}\partial_{2}\cdots\partial_{m}\lvert\,{\cdot}\,% \rvert^{-\gamma}\in\mathcal{S}^{\prime}(\mathbb{R}^{N})}, {0<\gamma<N}. In fact, we show global well-posedness for initial data bounded in an appropriate sense by {u_{0}} for any {\alpha>0}. Our approach is to study well-posedness and large time behavior on sectorial domains of the form {\Omega_{m}=\{x\in\mathbb{R}^{N}:x_{1},\ldots,x_{m}>0\}}, and then to extend the results by reflection to solutions on {\mathbb{R}^{N}} which are antisymmetric. We show that the large time behavior depends on the relationship between α and {\frac{2}{\gamma+m}}, and we consider all three cases, α equal to, greater than, and less than {\frac{2}{\gamma+m}}. Our results include, among others, new examples of self-similar and asymptotically self-similar solutions.


2021 ◽  
Vol 4 (3) ◽  
pp. 1-17
Author(s):  
Carmen Cortázar ◽  
◽  
Fernando Quirós ◽  
Noemí Wolanski ◽  
◽  
...  

<abstract><p>We study the decay/growth rates in all $ L^p $ norms of solutions to an inhomogeneous nonlocal heat equation in $ \mathbb{R}^N $ involving a Caputo $ \alpha $-time derivative and a power $ \beta $ of the Laplacian when the dimension is large, $ N &gt; 4\beta $. Rates depend strongly on the space-time scale and on the time behavior of the spatial $ L^1 $ norm of the forcing term.</p></abstract>


2021 ◽  
Vol 13 (8) ◽  
pp. 4105
Author(s):  
Yupei Jiang ◽  
Honghu Sun

Leisure walking has been an important topic in space-time behavior and public health research. However, prior studies pay little attention to the integration and the characterization of diverse and multilevel demands of leisure walking. This study constructs a theoretical framework of leisure walking behavior demands from three different dimensions and levels of activity participation, space-time opportunity, and health benefit. On this basis, through a face-to-face survey in Nanjing, China (N = 1168, 2017–2018 data), this study quantitatively analyzes the characteristics of leisure walking demands, as well as the impact of the built environment and individual factors on it. The results show that residents have a high demand for participation and health benefits of leisure walking. The residential neighborhood provides more space opportunities for leisure walking, but there is a certain constraint on the choice of walking time. Residential neighborhood with medium or large parks is more likely to satisfy residents’ demands for engaging in leisure walking and obtaining high health benefits, while neighborhood with a high density of walking paths tends to limit the satisfaction of demands for space opportunity and health benefit. For residents aged 36 and above, married, or retired, their diverse demands for leisure walking are more likely to be fulfilled, while those with high education, medium-high individual income, general and above health status, or children (<18 years) are less likely to be fulfilled. These finding that can have important implications for the healthy neighborhood by fully considering diverse and multilevel demands of leisure walking behavior.


2019 ◽  
Vol 78 (9) ◽  
pp. 2852-2866 ◽  
Author(s):  
Stefan Dohr ◽  
Jan Zapletal ◽  
Günther Of ◽  
Michal Merta ◽  
Michal Kravčenko

Author(s):  
Maria Michaela Porzio

AbstractIn this paper, we study the behavior in time of the solutions for a class of parabolic problems including the p-Laplacian equation and the heat equation. Either the case of singular or degenerate equations is considered. The initial datum $$u_0$$ u 0 is a summable function and a reaction term f is present in the problem. We prove that, despite the lack of regularity of $$u_0$$ u 0 , immediate regularization of the solutions appears for data f sufficiently regular and we derive estimates that for zero data f become the known decay estimates for these kinds of problems. Besides, even if f is not regular, we show that it is possible to describe the behavior in time of a suitable class of solutions. Finally, we establish some uniqueness results for the solutions of these evolution problems.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1251
Author(s):  
Wensheng Wang

We investigate spatial moduli of non-differentiability for the fourth-order linearized Kuramoto–Sivashinsky (L-KS) SPDEs and their gradient, driven by the space-time white noise in one-to-three dimensional spaces. We use the underlying explicit kernels and symmetry analysis, yielding spatial moduli of non-differentiability for L-KS SPDEs and their gradient. This work builds on the recent works on delicate analysis of regularities of general Gaussian processes and stochastic heat equation driven by space-time white noise. Moreover, it builds on and complements Allouba and Xiao’s earlier works on spatial uniform and local moduli of continuity of L-KS SPDEs and their gradient.


2006 ◽  
Vol 03 (01) ◽  
pp. 81-141 ◽  
Author(s):  
PIOTR T. CHRUŚCIEL ◽  
SZYMON ŁȨSKI

The study of Einstein equations leads naturally to Cauchy problems with initial data on hypersurfaces which closely resemble hyperboloids in Minkowski space-time, and with initial data with polyhomogeneous asymptotics, that is, with asymptotic expansions in terms of powers of ln r and inverse powers of r. Such expansions also arise in the conformal method for analysing wave equations in odd space-time dimension. In recent work it has been shown that for non-linear wave equations, or for wave maps, polyhomogeneous initial data lead to solutions which are also polyhomogeneous provided that an infinite hierarchy of corner conditions holds. In this paper we show that the result is true regardless of corner conditions.


Sign in / Sign up

Export Citation Format

Share Document