Malware Detection Approaches and Analysis for the Internet of Medical Things Enabled Healthcare Systems

The advancement of information and communications technology has changed an IoMT-enabled healthcare system. The Internet of Medical Things (IoMT) is a subset of the Internet of Things (IoT) that focuses on smart healthcare (medical) device connectivity. While the Internet of Medical Things (IoMT) communication environment facilitates and supports our daily health activities, it also has drawbacks such as password guessing, replay, impersonation, remote hijacking, privileged insider, denial of service (DoS), and man-in-the-middle attacks, as well as malware attacks. Malware botnets cause assaults on the system's data and other resources, compromising its authenticity, availability, confidentiality and, integrity. In the event of such an attack, crucial IoMT communication data may be exposed, altered, or even unavailable to authorised users. As a result, malware protection for the IoMT environment becomes critical. In this paper, we provide several forms of malware attacks and their consequences. We also go through security, privacy, and different IoMT malware detection schemes

Author(s):  
Shravani Devarakonda ◽  
Malka N. Halgamuge ◽  
Azeem Mohammad

In this chapter, the authors collected data from issues related to threats in the applications of IoT-based technologies that describe the security and privacy issues from 30 peer reviewed publications from 2014 to 2017. Further, they analyzed each threat type and its percentages in each application of the internet of things. The results indicated that the applications of smart transportation (20%) face the highest amount of security and privacy issues followed by smart home (19%) and smart cities (18%) compared to the rest of the applications. Further, they determined that the biggest threats were denial of service attack (9%) followed by eavesdropping (5%), man in the middle (4%), and replay (4%). Denial of service attacks and man in the middle attack are active attacks that can severely damage human life whereas eavesdropping is a passive attack that steals information. This study has found that privacy issues have the biggest impacts on people. Therefore, researchers need to find possible solutions to these threats to improve the quality of IoT applications.


Author(s):  
Shravani Devarakonda ◽  
Malka N. Halgamuge ◽  
Azeem Mohammad

In this chapter, the authors collected data from issues related to threats in the applications of IoT-based technologies that describe the security and privacy issues from 30 peer reviewed publications from 2014 to 2017. Further, they analyzed each threat type and its percentages in each application of the internet of things. The results indicated that the applications of smart transportation (20%) face the highest amount of security and privacy issues followed by smart home (19%) and smart cities (18%) compared to the rest of the applications. Further, they determined that the biggest threats were denial of service attack (9%) followed by eavesdropping (5%), man in the middle (4%), and replay (4%). Denial of service attacks and man in the middle attack are active attacks that can severely damage human life whereas eavesdropping is a passive attack that steals information. This study has found that privacy issues have the biggest impacts on people. Therefore, researchers need to find possible solutions to these threats to improve the quality of IoT applications.


Author(s):  
P. Jeyadurga ◽  
S. Ebenezer Juliet ◽  
I. Joshua Selwyn ◽  
P. Sivanisha

The Internet of things (IoT) is one of the emerging technologies that brought revolution in many application domains such as smart cities, smart retails, healthcare monitoring and so on. As the physical objects are connected via internet, security risk may arise. This paper analyses the existing technologies and protocols that are designed by different authors to ensure the secure communication over internet. It additionally focuses on the advancement in healthcare systems while deploying IoT services.


Author(s):  
Karthick G. S. ◽  
Pankajavalli P. B.

The internet of things (IoT) revolution is improving the proficiency of human healthcare infrastructures, and this chapter analyzes the applications of IoT in healthcare systems with diversified aspects such as topological arrangement of medical devices, layered architecture, and platform services. This chapter focuses on advancements in IoT-based healthcare in order to identify the communication and sensing technologies enabling the smart healthcare systems. The transformation of healthcare from doctor-centric to patient-centric with the diversified applications of IoT is discussed in detail. In addition, this chapter examines the various issues to be emphasized on designing an effective IoT-based healthcare system. It also explores security in healthcare systems and the possible security threats that may be vulnerable to the security essentials. Finally, this chapter summarizes the procedure of applying machine learning techniques on healthcare streaming data which provides intelligence to the systems.


2022 ◽  
pp. 238-257
Author(s):  
Hema D.

Globally, healthcare professionals strive to diagnose, monitor, and save human lives. An application that advances the medical field to the next level is the need of the hour. Smart healthcare systems using IoT help in the process of monitoring human health by minimizing human intervention. Taking care and monitoring of human health has a significant contribution in declining the mortality rate as well. IoT in healthcare has aided smarter communications and prompt treatment to save lives. Patient data are sensed by sensors/microcontrollers, sent over the internet, stored in the cloud, and received by healthcare professionals during emergencies. Applications of such smart healthcare using IoT are blood glucose meters, medical vehicles, sphygmomanometer, pulse oximeter, Holter monitor, etc. This chapter elucidates several smart healthcare IoT applications using artificial intelligence and cloud computing technology. The chapter also elaborates the importance and functions of various cloud and AI components in designing a smart healthcare application.


2019 ◽  
Vol 7 (2) ◽  
pp. 21-40 ◽  
Author(s):  
Parthasarathy Panchatcharam ◽  
Vivekanandan S.

Wellbeing is fundament requirement. What's more, it is human appropriate to get quality health care. These days, India is confronting numerous medical problems in light of fewer assets. This survey article displays the idea of solving health issues by utilizing a recent innovation, the Internet of Things (IOT). The Internet of Things with their developing interdisciplinary applications has changed our lives. Smart health care being one such IoT application interfaces brilliant gadgets, machines, patients, specialists, and sensors to the web. At long last, the difficulties and prospects of the improvement of IoT-based medicinal service frameworks are talked about in detail. This review additionally summarizes the security and protection worries of IoT, administrations and application of IoT and smart healthcare services that have changed the customary medicinal services framework by making healthcare administration more proficient through their applications.


Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2932
Author(s):  
Ivan Vaccari ◽  
Maurizio Aiello ◽  
Enrico Cambiaso

Security of the Internet of Things is a crucial topic, due to the criticality of the networks and the sensitivity of exchanged data. In this paper, we target the Message Queue Telemetry Transport (MQTT) protocol used in IoT environments for communication between IoT devices. We exploit a specific weakness of MQTT which was identified during our research, allowing the client to configure the behavior of the server. In order to validate the possibility to exploit such vulnerability, we propose SlowITe, a novel low-rate denial of service attack aimed to target MQTT through low-rate techniques. We validate SlowITe against real MQTT services, considering both plain text and encrypted communications and comparing the effects of the threat when targeting different daemons. Results show that the attack is successful and it is able to exploit the identified vulnerability to lead a DoS on the victim with limited attack resources.


2018 ◽  
Vol 2018 ◽  
pp. 1-30 ◽  
Author(s):  
Michele De Donno ◽  
Nicola Dragoni ◽  
Alberto Giaretta ◽  
Angelo Spognardi

The Internet of Things (IoT) revolution has not only carried the astonishing promise to interconnect a whole generation of traditionally “dumb” devices, but also brought to the Internet the menace of billions of badly protected and easily hackable objects. Not surprisingly, this sudden flooding of fresh and insecure devices fueled older threats, such as Distributed Denial of Service (DDoS) attacks. In this paper, we first propose an updated and comprehensive taxonomy of DDoS attacks, together with a number of examples on how this classification maps to real-world attacks. Then, we outline the current situation of DDoS-enabled malwares in IoT networks, highlighting how recent data support our concerns about the growing in popularity of these malwares. Finally, we give a detailed analysis of the general framework and the operating principles of Mirai, the most disruptive DDoS-capable IoT malware seen so far.


Sign in / Sign up

Export Citation Format

Share Document