scholarly journals Towards Society Revolution

2018 ◽  
Vol 2 (2) ◽  
pp. 37-38
Author(s):  
Tara I. Yahiya

It is expected that the 5G will change the landscape of the communication paradigm as it will offer huge number of device connections, high data rate, evolutionary channel modulation, etc. The 5G predicts to have billions of devices connected through its new scenarios involving Internet of Things (IoT), Machine Type Communications (MTC), Machine- to- Machine Communications (M2M) via the use of different types of devices including but not restricted to smartphones based IP packet.

Author(s):  
Sarita Tripathy ◽  
Shaswati Patra

The huge number of items associated with web is known as the internet of things. It is associated with worldwide data consisting of various components and different types of gadgets, sensors, and software, and a large variety of other instruments. A large number of applications that are required in the field of agriculture should implement methods that should be realistic and reliable. Precision agriculture practices in farming are more efficient than traditional farming techniques. Precision farming simultaneously analyzes data along with generating it by the use of sensors. The application areas include tracking of farm vehicles, monitoring of the livestock, observation of field, and monitoring of storage. This type of system is already being accepted and adopted in many countries. The modern method of smart farming has started utilizing the IoT for better and faster yield of crops. This chapter gives a review of the various IoT techniques used in smart farming.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Tongyi Zheng ◽  
Lei Ning ◽  
Qingsong Ye ◽  
Fan Jin

Massive machine-type communications (mMTCs) for Internet of things are being developed thanks to the fifth-generation (5G) wireless systems. Narrowband Internet of things (NB-IoT) is an important communication technology for machine-type communications. It supports many different protocols for communication. The reliability and performance of application layer communication protocols are greatly affected by the retransmission time-out (RTO) algorithm. In order to improve the reliability and performance of machine-type communications, this study proposes a novel RTO algorithm UDP-XGB based on the user datagram protocol (UDP) and NB-IoT. It combines traditional algorithms with machine learning. The simulation results show that real round-trip time (RTT) is close to the RTO, which is obtained by this algorithm, and the reliability and performance of machine-type communications have improved.


2021 ◽  
Author(s):  
Yeduri Sreenivasa Reddy ◽  
Garima Chopra ◽  
Ankit Dubey ◽  
Abhinav Kumar ◽  
Trilochan Panigrahi ◽  
...  

2019 ◽  
Author(s):  
ALOKNATH DE

The vision of 5G is to connect multiple devices and provide meaningful services under a common rooftop, enabling the world populace to communicate to each other. It is estimated that industrial Internet of Things (IoT) alone will comprise of more than 25 billion devices by 2025 [1]-[2]. All these devices will broadly be cateogrized into three main streams of 5G principles: (1) enhanced Mobile Broadband (eMBB), (2) Ultra Reliable Low Latency Communications (URLLC) and (3) massive Machine-Type Communications (mMTC). They come with their own unique requirements that have to be adhered by the network.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Yujin Lim ◽  
Jaesung Park

The MTC (Machine Type Communications) system is one of the most promising technologies to provide IoT (Internet of Things) applications. The MTC system suffers from congestion due to limited data transmission capacity and burst traffic. The congestion disturbs data delivery, results in an increase of energy consumption due to data retransmission, and finally poses a threat to the providers of IoT applications. In this paper, we focus on the congestion problem and present an efficient data forwarding mechanism to regulate the burst channel access from a large number of MTC devices. To regulate the communication channel access from the devices, we predict the number of devices by separating traffic load into the prediction of the number of devices that newly attempt to have access and the prediction of the number of devices that retry to access the channel. Through simulations, we show that our mechanism improves access success probability and reduces collision probability and access delay.


As we know, world is moving into the era of modern digital technology and looking forward tomassive machine type communications (mMTC), whichis an integral part of Internet of Things (IoT). The current technologysupporting mMTC market are not standardized; therefore, there are many short comings from physical layer which includes complexity in deployment, poor reliability, lesser flexibility, security threats and high maintenance cost. To address all these challenges in 5G machine type communication (MTC), the 3rdGeneration Partnership Project (3GPP) in release 13has standardizedNarrowband Internet of Things (NB-IoT) as a better choice in deployment of 5G MTC. NB-IoT has been recommended by ITU as a 5G standard and this recognition of NB-IoT as a core technology in massive machine type communication will impact the telecommunication industry. NB-IoT mainly works on low power wide area networks (LPWAN), which isconsidered as a major technology driver in 5G wireless technologies. Initially,we have compared a spectrum power of NB-IoT with W-Fi ac considering their own bandwidthand specificationsas per 3GPP and IEEE 802.11,respectively.As per analysis, we found many advantages of deploying NB-IoT in 5thgeneration wireless technology including ubiquitous coverage, low power consumption, less transmission power and better interference rejection. Considering thisfact of NB-IoT, we proposedand design a NB-IoT uplink systemusing NPUSCH, UL-SCH and UL-DMRS as per 3GPP 5G specificationsand performance analysis has been carried out


Sign in / Sign up

Export Citation Format

Share Document