scholarly journals Probabilistic Seismic Hazards Analysis of Ambikapur-Chhattisgarh (India)

The present study reveals the seismic hazard analysis of district headquarter Ambikapur, in the state of Chhattisgarh. Usually, seismic hazard study attempts to analyze two different kinds of anticipated ground motions, “the Deterministic Seismic Hazard Analysis (DSHA)” and “the Probabilistic Seismic Hazard Analysis (PSHA)”. The maximum Peak Ground Acceleration (PGA) has been estimated by using Iyengar and Raghu Kanth (2004) attenuation relationship. The regional recurrences relation is obtained by using available historical data and 33 numbers of seismic sources (liner faults) that are likely to cause ground motion, around the study area. The probabilistic seismic hazard analysis has been applied over Ambikapur, to assess the probability of exceedance for various PGA(g)values the seismic hazard curve has been developed by using Raghu Kanth and Iyengar (2007) attenuation relationship. Theprobability of exceedance for PGA(g) values as 0.01g,0.05g,0.10g,0.15g for their corresponding return periods have also been assessed. The liner seismic source having length 46kM, produced maximum peak ground motion as 0.15259g for recurrence period of 100 years. For Ambikapur district headquarter the probability of exceedance for 0.1g with a return period of 8788 years is estimated as 63.22%. Maximum Peak Ground Acceleration value and % probability of exceedance reflects that the seismicity of Ambikapur district headquarter is found to have exceeded from 0.1g as recommended by IS:1893 (Part 1): 2016 (Sixth Revision) for Chhattisgarh. Hence, it is recommended from present study that, Ambikapur should be included in zone III instead of zone II.

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Uzlifatul Azmiyati

Wilayah kepulauan Nusa Tenggara berada pada zona pertemuan lempeng tektonik dan memiliki sesar-sesar aktif. Kondisi ini menyebabkan wilayah ini sering dilanda bencana gempabumi. Oleh karena itu penelitian mengenai percepatan maksimum tanah  (peak  ground  acceleration  (PGA))  yang  menggambarkan tingkat bahaya akibat gempa menjadi penting sebagai langkah mitigasi awal. Metode yang digunakan dalam penelitian ini adalah metode probabilistic seismic hazard analysis (PSHA) dengan bantuan perangkat lunak USGS PSHA 2007. Metode  PSHA  memperhitungkan  dan  menggabungkan  ketidakpastian  dari mekanisme   kejadian  gempa,  lokasi,  dan  kejadian   frekuensi   gempa  untuk mendapatkan gambaran tingkat bahaya suatu lokasi. Tingkat bahaya tersebut ditunjukkan dalam bentuk  nilai PGA. Penelitian ini menggunakan data dari katalog gempa NEIC-USGS dan BMKG untuk daerah wilayah  Kepulauan Nusa Tenggara antara 40-120LS dan 1100-1250BT dari tahun 1973 sampai tahun 2011. Analisis yang telah dilakukan menghasilkan variasi nilai PGA antara 0g-0,50g. Dari peta PGA diketahui bahwa daerah Pulau Sumbawa, Sumba, Timor, Flores dan Kupang memiliki tingkat bahaya gempabumi tinggi dengan nilai PGA antara 0,25g - 0,50g. Daerah Pulau Bali dan Lombok bagian Selatan memiliki tingkat bahaya gempa rendah dengan nilai PGA antara 0,1g - 0,25g.


Author(s):  
Zoya Farajpour ◽  
Milad Kowsari ◽  
Shahram Pezeshk ◽  
Benedikt Halldorsson

ABSTRACT We apply three data-driven selection methods, log-likelihood (LLH), Euclidean distance-based ranking (EDR), and deviance information criterion (DIC), to objectively evaluate the predictive capability of 10 ground-motion models (GMMs) developed from Iranian and worldwide data sets against a new and independent Iranian strong-motion data set. The data set includes, for example, the 12 November 2017 Mw 7.3 Ezgaleh earthquake and the 25 November 2018 Mw 6.3 Sarpol-e Zahab earthquake and includes a total of 201 records from 29 recent events with moment magnitudes 4.5≤Mw≤7.3 with distances up to 275 km. The results of this study show that the prior sigma of the GMMs acts as the key measure used by the LLH and EDR methods in the ranking against the data set. In some cases, this leads to the resulting model bias being ignored. In contrast, the DIC method is free from such ambiguity as it uses the posterior sigma as the basis for the ranking. Thus, the DIC method offers a clear advantage of partially removing the ergodic assumption from the GMM selection process and allows a more objective representation of the expected ground motion at a specific site when the ground-motion recordings are homogeneously distributed in terms of magnitudes and distances. The ranking results thus show that the local models that were exclusively developed from Iranian strong motions perform better than GMMs from other regions for use in probabilistic seismic hazard analysis in Iran. Among the Next Generation Attenuation-West2 models, the GMMs by Boore et al. (2014) and Abrahamson et al. (2014) perform better. The GMMs proposed by Darzi et al. (2019) and Farajpour et al. (2019) fit the recorded data well at short periods (peak ground acceleration and pseudoacceleration spectra at T=0.2  s). However, at long periods, the models developed by Zafarani et al. (2018), Sedaghati and Pezeshk (2017), and Kale et al. (2015) are preferable.


2009 ◽  
Vol 9 (3) ◽  
pp. 865-878 ◽  
Author(s):  
K. S. Vipin ◽  
P. Anbazhagan ◽  
T. G. Sitharam

Abstract. In this work an attempt has been made to evaluate the seismic hazard of South India (8.0° N–20° N; 72° E–88° E) based on the probabilistic seismic hazard analysis (PSHA). The earthquake data obtained from different sources were declustered to remove the dependent events. A total of 598 earthquakes of moment magnitude 4 and above were obtained from the study area after declustering, and were considered for further hazard analysis. The seismotectonic map of the study area was prepared by considering the faults, lineaments and the shear zones in the study area which are associated with earthquakes of magnitude 4 and above. For assessing the seismic hazard, the study area was divided into small grids of size 0.1°×0.1°, and the hazard parameters were calculated at the centre of each of these grid cells by considering all the seismic sources with in a radius of 300 km. Rock level peak horizontal acceleration (PHA) and spectral acceleration (SA) values at 1 s corresponding to 10% and 2% probability of exceedance in 50 years have been calculated for all the grid points. The contour maps showing the spatial variation of these values are presented here. Uniform hazard response spectrum (UHRS) at rock level for 5% damping and 10% and 2% probability of exceedance in 50 years were also developed for all the grid points. The peak ground acceleration (PGA) at surface level was calculated for the entire South India for four different site classes. These values can be used to find the PGA values at any site in South India based on site class at that location. Thus, this method can be viewed as a simplified method to evaluate the PGA values at any site in the study area.


Author(s):  
A. K. Ghosh ◽  
H. S. Kushwaha

The various uncertainties and randomness associated with the occurrence of earthquakes and the consequences of their effects on the NPP components and structures call for a probabilistic seismic risk assessment (PSRA). However, traditionally, the seismic design basis ground motion has been specified by normalised response spectral shapes and peak ground acceleration (PGA). The mean recurrence interval (MRI) used to be computed for PGA only. The present work develops uniform hazard response spectra i.e. spectra having the same MRI at all frequencies for Kakrapar Atomic Power Station site. Sensitivity of the results to the changes in various parameters has also been presented. These results determine the seismic hazard at the given site and the associated uncertainties. The paper also presents some results of the seismic fragility for an existing containment structure. The various parameters that could affect the seismic structural response include material strength of concrete, structural damping available within the structure and the normalized ground motion response spectral shape. Based on this limited case study the seismic fragility of the structure is developed. The results are presented as families of conditional probability curves plotted against the peak ground acceleration (PGA). The procedure adopted incorporates the various randomness and uncertainty associated with the parameters under consideration.


Sign in / Sign up

Export Citation Format

Share Document