scholarly journals Boundary value problems for a class of stochastic nonlinear fractional order differential equations

2020 ◽  
Vol 4 (2) ◽  
pp. 152-159
Author(s):  
McSylvester Ejighikeme Omaba ◽  
◽  
Louis O. Omenyi ◽  

Consider a class of two-point Boundary Value Problems (BVP) for a stochastic nonlinear fractional order differential equation \(D^\alpha u(t)=\lambda\sqrt{I^\beta[\sigma^2(t,u(t))]}\dot{w}(t)\  ,0< t< 1\) with boundary conditions \(u(0)=0,\,\,u'(0)=u'(1)=0,\) where \(\lambda>0\) is a level of the noise term, \(\sigma:[0,1]\times\mathbb{R}\rightarrow\mathbb{R}\) is continuous, \(\dot{w}(t)\) is a generalized derivative of Wiener process (Gaussian white noise), \(D^\alpha\) is the Riemann-Liouville fractional differential operator of order \(\alpha\in (3,4)\) and \(I^\beta,\,\,\beta>0\) is a fractional integral operator. We formulate the solution of the equation via a stochastic Volterra-type equation and investigate its existence and uniqueness under some precise linearity conditions using contraction fixed point theorem. A case of the above BVP for a stochastic nonlinear second order differential equation for \(\alpha=2\) and \(\beta=0\) with \(u(0)=u(1)=0\) is also studied.

Fractals ◽  
2020 ◽  
Vol 28 (08) ◽  
pp. 2040025
Author(s):  
JINGFEI JIANG ◽  
JUAN L. G. GUIRAO ◽  
TAREQ SAEED

In this study, the two-point boundary value problem is considered for the variable fractional order differential equation with causal operator. Under the definition of the Caputo-type variable fractional order operators, the necessary inequality and the existence results of the solution are obtained for the variable order fractional linear differential equations according to Arzela–Ascoli theorem. Then, based on the proposed existence results and the monotone iterative technique, the existence of the extremal solution is studied, and the relative results are obtained based on the lower and upper solution. Finally, an example is provided to illustrate the validity of the theoretical results.


2021 ◽  
Vol 23 (08) ◽  
pp. 181-185
Author(s):  
Karanveer Singh ◽  
◽  
R N Prajapati ◽  

We consider a fractional order differential equation with uncertainty and introduce the concept of solution. It goes beyond ordinary first-order differential equations and differential equations with uncertainty.


2014 ◽  
Vol 58 (1) ◽  
pp. 183-197 ◽  
Author(s):  
John R. Graef ◽  
Johnny Henderson ◽  
Rodrica Luca ◽  
Yu Tian

AbstractFor the third-order differential equationy′″ = ƒ(t, y, y′, y″), where, questions involving ‘uniqueness implies uniqueness’, ‘uniqueness implies existence’ and ‘optimal length subintervals of (a, b) on which solutions are unique’ are studied for a class of two-point boundary-value problems.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
O. F. Imaga ◽  
S. A. Iyase

AbstractIn this work, we consider the solvability of a fractional-order p-Laplacian boundary value problem on the half-line where the fractional differential operator is nonlinear and has a kernel dimension equal to two. Due to the nonlinearity of the fractional differential operator, the Ge and Ren extension of Mawhin’s coincidence degree theory is applied to obtain existence results for the boundary value problem at resonance. Two examples are used to validate the established results.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Aftab Hussain

The aim of this paper is to present another family of fractional symmetric α - η -contractions and build up some new results for such contraction in the context of ℱ -metric space. The author derives some results for Suzuki-type contractions and orbitally T -complete and orbitally continuous mappings in ℱ -metric spaces. The inspiration of this paper is to observe the solution of fractional-order differential equation with one of the boundary conditions using fixed-point technique in ℱ -metric space.


Author(s):  
Hong Wang ◽  
Danping Yang

AbstractFractional differential equation (FDE) provides an accurate description of transport processes that exhibit anomalous diffusion but introduces new mathematical difficulties that have not been encountered in the context of integer-order differential equation. For example, the wellposedness of the Dirichlet boundary-value problem of one-dimensional variable-coefficient FDE is not fully resolved yet. In addition, Neumann boundary-value problem of FDE poses significant challenges, partly due to the fact that different forms of FDE and different types of Neumann boundary condition have been proposed in the literature depending on different applications.We conduct preliminary mathematical analysis of the wellposedness of different Neumann boundary-value problems of the FDEs. We prove that five out of the nine combinations of three different forms of FDEs that are closed by three types of Neumann boundary conditions are well posed and the remaining four do not admit a solution. In particular, for each form of the FDE there is at least one type of Neumann boundary condition such that the corresponding boundary-value problem is well posed, but there is also at least one type of Neumann boundary condition such that the corresponding boundary-value problem is ill posed. This fully demonstrates the subtlety of the study of FDE, and, in particular, the crucial mathematical modeling question: which combination of FDE and fractional Neumann boundary condition, rather than which form of FDE or fractional Neumann boundary condition, should be used and studied in applications.


Sign in / Sign up

Export Citation Format

Share Document