scholarly journals Cell stress response to low-dose neutron radiation

2020 ◽  
Vol 1 (1) ◽  
pp. 036-042
Author(s):  
Konstantin Andreevich Kuznetsov ◽  
Pavel Semenovich Kizim ◽  
Andrey Yurievich Berezhnoy ◽  
Oleksandr Pilipovich Shchus ◽  
Gennadiy Michailovich Onyshchenko

Background. It is a point of discussion whether low-dose ionizing radiation has harmful or stimulating impact on cell. According to high relative biological effectiveness of neutron radiation there is a need of description of any process triggered in the cell by neutrons. Objective. The aim of current work is the investigation of the low dosed neutron radiation effects on human cells by indicators of cell stress such as state of chromatin and cell membrane permeability. Materials and methods. Human buccal epithelium cells from 3 male donors (21, 24, 25 years old) were exposed to fast neutron radiation in dose range 2.3–146.0 mSv from 239Pu-Be source. State of chromatin was evaluated by count of heterochromatin granules quantity in 100 nuclei stained with 2% orcein in 45% acetic acid; ratio of cells with increased membrane permeability stained with 5 mM indigocarmine in 300 cells. Results. Changes in level of heterochromatin granules quantity and in cell membrane permeability revealed wave-shaped dependency with maximum effects at 36.5 mSv. Further increase of dose resulted in return of both chromatin state and membrane permeability levels closely to control or even lower. Conclusion. Membrane restoration and chromatin decompaction under doses higher than 36.5 mSv together can be a sign of hormetic (stimulating) effect of low-dose neutron radiation.

Author(s):  
M. Ashraf ◽  
L. Landa ◽  
L. Nimmo ◽  
C. M. Bloor

Following coronary artery occlusion, the myocardial cells lose intracellular enzymes that appear in the serum 3 hrs later. By this time the cells in the ischemic zone have already undergone irreversible changes, and the cell membrane permeability is variably altered in the ischemic cells. At certain stages or intervals the cell membrane changes, allowing release of cytoplasmic enzymes. To correlate the changes in cell membrane permeability with the enzyme release, we used colloidal lanthanum (La+++) as a histological permeability marker in the isolated perfused hearts. The hearts removed from sprague-Dawley rats were perfused with standard Krebs-Henseleit medium gassed with 95% O2 + 5% CO2. The hypoxic medium contained mannitol instead of dextrose and was bubbled with 95% N2 + 5% CO2. The final osmolarity of the medium was 295 M osmol, pH 7. 4.


2015 ◽  
Vol 25 (17) ◽  
pp. 3610-3615 ◽  
Author(s):  
Junsuke Hayashi ◽  
Tomoko Hamada ◽  
Ikumi Sasaki ◽  
Osamu Nakagawa ◽  
Shun-ichi Wada ◽  
...  

1974 ◽  
Vol 64 (6) ◽  
pp. 706-729 ◽  
Author(s):  
W. R. Redwood ◽  
E. Rall ◽  
W. Perl

The permeability coefficients of dog red cell membrane to tritiated water and to a series of[14C]amides have been deduced from bulk diffusion measurements through a "tissue" composed of packed red cells. Red cells were packed by centrifugation inside polyethylene tubing. The red cell column was pulsed at one end with radiolabeled solute and diffusion was allowed to proceed for several hours. The distribution of radioactivity along the red cell column was measured by sequential slicing and counting, and the diffusion coefficient was determined by a simple plotting technique, assuming a one-dimensional diffusional model. In order to derive the red cell membrane permeability coefficient from the bulk diffusion coefficient, the red cells were assumed to be packed in a regular manner approximating closely spaced parallelopipeds. The local steady-state diffusional flux was idealized as a one-dimensional intracellular pathway in parallel with a one-dimensional extracellular pathway with solute exchange occurring within the series pathway and between the pathways. The diffusion coefficients in the intracellular and extracellular pathways were estimated from bulk diffusion measurements through concentrated hemoglobin solutions and plasma, respectively; while the volume of the extracellular pathway was determined using radiolabeled sucrose. The membrane permeability coefficients were in satisfactory agreement with the data of Sha'afi, R. I., C. M. Gary-Bobo, and A. K. Solomon (1971. J. Gen. Physiol. 58:238) obtained by a rapid-reaction technique. The method is simple and particularly well suited for rapidly permeating solutes.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Hsiu-Yang Tseng ◽  
Chiu-Jen Chen ◽  
Zong-Lin Wu ◽  
Yong-Ming Ye ◽  
Guo-Zhen Huang

Cell-membrane permeability to water (Lp) and cryoprotective agents (Ps) of a cell type is a crucial cellular information for achieving optimal cryopreservation in the biobanking industry. In this work, a...


2021 ◽  
Vol 1024 ◽  
pp. 127-133
Author(s):  
Matteo Ferrari ◽  
Aldo Zenoni ◽  
Yong Joong Lee ◽  
Alberto Andrighetto

Lubricants and O-rings are necessarily used for the construction of many accelerator-driven facilities as spallation sources or facilities for the production of radioactive isotopes. During operation, such component will absorb high doses of mixed neutron and gamma radiation, that can degrade their mechanical and structural properties. Experimental radiation damage tests of these components are mandatory for the construction of the facility. Methodologies for irradiation in nuclear reactor mixed fields and post-irradiation examination of lubricating oils, greases and O-rings were developed and are here presented. Samples were characterized with standard mechanical and physical-chemical tests. Parametric studies on the dose rate effects have been performed on O-rings. A case studies for a specific O-ring application in a gate valve has been developed. Some of the tested samples showed a dramatic change of their properties with dose, while others remain stable. Results were collected on nine commercial greases, on one oil and on four commercial elastomeric O-rings. The most radiation resistant among the selected products are now considered for application in facilities under construction. The main mechanisms of neutron and gamma radiation damage on these polymers were investigated at the mechanical and structural level.


Sign in / Sign up

Export Citation Format

Share Document