scholarly journals Potentially toxic metallic wear nanoparticles and trace metal ions release from metal-on-metal orthopedic implants in the human biological specimens: An Overview of in vivo and ex vivo clinical studies

2020 ◽  
Vol 8 (3) ◽  
pp. 242-292
Author(s):  
Henryk Matusiewicz ◽  
Magdalena Richter

The use of metallic biomaterials in the medical implant devices has become increasingly prevalent over the past few decades. Patients find themselves being exposed to metals in a variety of ways, ranging from external exposure to instruments such as medical devices to internal exposure via surgical devices being implanted in their bodies. In situ generation of metallic wear nanoparticles, corrosion products and in vivo trace metal ions release from metal and metallic alloys implanted into the body in orthopedic surgery is becoming a major cause for concern regarding the health and safety of patients. The chemical form, particulate vs. ionic, of the metal species in the bodily fluids and tissues is a key to the local nanotoxicity effects arising in the body. Potential health risks are associated with metallic wear debris in the form of nanoparticles in situ generation and the release of in vivo trace metal ions into human biological specimen's circulation. This overview explores how migration of metallic wear nanoparticles and ultratrace metal ions in the area of metal-on-metal orthopedic implants influences the surrounding tissues and bodily fluids, and what the toxicological consequences of this process may be. Specifically, the present article is more informative of indicative multilevel in situ/in vivo/ex vivo analytical/clinical methodologies which will be helpful in a way to plan, understand and lead the analytical innovations in the area of nano-analysis to improve patient outcomes.

2021 ◽  
Vol 9 (3) ◽  
pp. 167-187
Author(s):  
Magdalena Richter ◽  
Henryk Matusiewicz

Biologic reactivity to implant debris is the primary determinant of long-term clinical performance. The metallic implants placed in human bodies can exhibit electrochemical or mechanical corrosion that yields in the liberation of metallic products. Such implants-derived metal wear products can be present in the form of metal ions and particulate metal debris with still unknown effects on human health. In situ generation of metallic wear particles, corrosion products and in vivo trace metal ions release from metal and metallic alloys implanted into the body in spine surgery is becoming a major cause for concern regarding the health and safety of patients. In vivo clinical studies addressing the adverse local tissue reaction effects of metallic wear products on surrounding soft tissues and bodily fluids are less numerous. Although numerous studies have focused on the clinical significance of corrosion and wear of hip and knee replacements, research involving spine instrumentation is not well documented. This review explores how migration of metallic wear nanoparticles and trace metal ions in the area of metallic spinal implants influences the surrounding tissues and bodily fluids, and what the clinical consequences of this process may be.


2012 ◽  
Vol 82 (3) ◽  
pp. 228-232 ◽  
Author(s):  
Mauro Serafini ◽  
Giuseppa Morabito

Dietary polyphenols have been shown to scavenge free radicals, modulating cellular redox transcription factors in different in vitro and ex vivo models. Dietary intervention studies have shown that consumption of plant foods modulates plasma Non-Enzymatic Antioxidant Capacity (NEAC), a biomarker of the endogenous antioxidant network, in human subjects. However, the identification of the molecules responsible for this effect are yet to be obtained and evidences of an antioxidant in vivo action of polyphenols are conflicting. There is a clear discrepancy between polyphenols (PP) concentration in body fluids and the extent of increase of plasma NEAC. The low degree of absorption and the extensive metabolism of PP within the body have raised questions about their contribution to the endogenous antioxidant network. This work will discuss the role of polyphenols from galenic preparation, food extracts, and selected dietary sources as modulators of plasma NEAC in humans.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Cheng Zhou ◽  
Youzhou Yang ◽  
Jiaxin Wang ◽  
Qingyang Wu ◽  
Zhuozhi Gu ◽  
...  

AbstractIn vivo bioprinting has recently emerged as a direct fabrication technique to create artificial tissues and medical devices on target sites within the body, enabling advanced clinical strategies. However, existing in vivo bioprinting methods are often limited to applications near the skin or require open surgery for printing on internal organs. Here, we report a ferromagnetic soft catheter robot (FSCR) system capable of in situ computer-controlled bioprinting in a minimally invasive manner based on magnetic actuation. The FSCR is designed by dispersing ferromagnetic particles in a fiber-reinforced polymer matrix. This design results in stable ink extrusion and allows for printing various materials with different rheological properties and functionalities. A superimposed magnetic field drives the FSCR to achieve digitally controlled printing with high accuracy. We demonstrate printing multiple patterns on planar surfaces, and considering the non-planar surface of natural organs, we then develop an in situ printing strategy for curved surfaces and demonstrate minimally invasive in vivo bioprinting of hydrogels in a rat model. Our catheter robot will permit intelligent and minimally invasive bio-fabrication.


ChemInform ◽  
1987 ◽  
Vol 18 (32) ◽  
Author(s):  
U. P. SINGH ◽  
R. GHOSE ◽  
A. K. GHOSE

Talanta ◽  
1976 ◽  
Vol 23 (3) ◽  
pp. 244-246 ◽  
Author(s):  
Yong Keun Lee ◽  
Kyu Ja Whang ◽  
Keihei Ueno

Sign in / Sign up

Export Citation Format

Share Document