scholarly journals Performance Evaluation of Digital Image Processing by Using Scilab

2021 ◽  
Vol 9 (2) ◽  
pp. 239
Author(s):  
Rudi Heriansyah ◽  
Wahyu Mulyo Utomo

Scilab is an open-source, cross-platform computational environment software available for academic and research purposes as a free of charge alternative to the matured computational copyrighted software such as MATLAB. One of important library available for Scilab is image processing toolbox dedicated solely for image and video processing. There are three major toolboxes for this purpose: Scilab image processing toolbox (SIP), Scilab image and video processing toolbox (SIVP) and recently image processing design toolbox (IPD). The target discussion in this paper is SIVP due to its vast use out there and its capability to handle streaming video file as well (note that IPD also supports video processing). Highlight on the difference between SIVP and IPD will also be discussed. From testing, it is found that in term of looping test, Octave and FreeMat are faster than Scilab. However, when converting RGB image to grayscale image, Scilab outperform Octave and FreeMat.

2018 ◽  
Vol 1 (2) ◽  
pp. 17-23
Author(s):  
Takialddin Al Smadi

This survey outlines the use of computer vision in Image and video processing in multidisciplinary applications; either in academia or industry, which are active in this field.The scope of this paper covers the theoretical and practical aspects in image and video processing in addition of computer vision, from essential research to evolution of application.In this paper a various subjects of image processing and computer vision will be demonstrated ,these subjects are spanned from the evolution of mobile augmented reality (MAR) applications, to augmented reality under 3D modeling and real time depth imaging, video processing algorithms will be discussed to get higher depth video compression, beside that in the field of mobile platform an automatic computer vision system for citrus fruit has been implemented ,where the Bayesian classification with Boundary Growing to detect the text in the video scene. Also the paper illustrates the usability of the handed interactive method to the portable projector based on augmented reality.   © 2018 JASET, International Scholars and Researchers Association


In many image processing applications, a wide range of image enhancement techniques are being proposed. Many of these techniques demanda lot of critical and advance steps, but the resultingimage perception is not satisfactory. This paper proposes a novel sharpening method which is being experimented with additional steps. In the first step, the color image is transformed into grayscale image, then edge detection process is applied using Laplacian technique. Then deduct this image from the original image. The resulting image is as expected; After performing the enhancement process,the high quality of the image can be indicated using the Tenengrad criterion. The resulting image manifested the difference in certain areas, the dimension and the depth as well. Histogram equalization technique can also be applied to change the images color.


Author(s):  
Md Mamunur Rashid

Image Processing in Multimedia Applications treats a number of critical topics in multimedia systems, with respect to image and video processing techniques and their implementations. These techniques include the Image and video compression techniques and standards, and Image and video indexing and retrieval techniques. Image Processing is an important tool to develop a Multimedia system design.


Author(s):  
Vittoria Bruni ◽  
Domenico Vitulano

This chapter aims at analyzing the role of human early vision in image and video processing, with particular reference to face perception, recognition, and tracking. To this aim, the change of perspective in approaching image processing-based problems where the decoder (human eye) plays a central role is analysed and discussed. In particular, the main topics of this contribution are some important neurological results that have been successfully used in face detection and recognition, as well as those that seem to be promising in giving new and powerful tools for face tracking, which remains a less investigated topic from this new standpoint.


Author(s):  
mengxi tan ◽  
xingyuan xu ◽  
David Moss

Advanced image processing will be crucial for emerging technologies such as autonomous driving, where the requirement to quickly recognize and classify objects under rapidly changing, poor visibility environments in real time will be needed. Photonic technologies will be key for next-generation signal and information processing, due to their wide bandwidths of 10’s of Terahertz and versatility. Here, we demonstrate broadband real time analog image and video processing with an ultrahigh bandwidth photonic processor that is highly versatile and reconfigurable. It is capable of massively parallel processing over 10,000 video signals simultaneously in real time, performing key functions needed for object recognition, such as edge enhancement and detection. Our system, based on a soliton crystal Kerr optical micro-comb with a 49GHz spacing with >90 wavelengths in the C-band, is highly versatile, performing different functions without changing the physical hardware. These results highlight the potential for photonic processing based on Kerr microcombs for chip-scale fully programmable high-speed real time video processing for next generation technologies.


2021 ◽  
Author(s):  
David Moss

<p>Advanced image processing will be crucial for emerging technologies such as autonomous driving, where the requirement to quickly recognize and classify objects under rapidly changing, poor visibility environments in real time will be needed. Photonic technologies will be key for next-generation signal and information processing, due to their wide bandwidths of 10’s of Terahertz and versatility. Here, we demonstrate broadband real time analog image and video processing with an ultrahigh bandwidth photonic processor that is highly versatile and reconfigurable. It is capable of massively parallel processing over 10,000 video signals simultaneously in real time, performing key functions needed for object recognition, such as edge enhancement and detection. Our system, based on a soliton crystal Kerr optical micro-comb with a 49GHz spacing with >90 wavelengths in the C-band, is highly versatile, performing different functions without changing the physical hardware. These results highlight the potential for photonic processing based on Kerr microcombs for chip-scale fully programmable high-speed real time video processing for next generation technologies.</p>


2021 ◽  
Author(s):  
Mengxi Tan ◽  
Xingyuan Xu ◽  
Andreas Boes ◽  
Bill Corcoran ◽  
Jiayang Wu ◽  
...  

Abstract Advanced image processing will be crucial for emerging technologies such as autonomous driving, where the requirement to quickly recognize and classify objects under rapidly changing, poor visibility environments in real time will be needed. Photonic technologies will be key for next-generation signal and information processing, due to their wide bandwidths of 10’s of Terahertz and versatility. Here, we demonstrate broadband real time analog image and video processing with an ultrahigh bandwidth photonic processor that is highly versatile and reconfigurable. It is capable of massively parallel processing over 10,000 video signals simultaneously in real time, performing key functions needed for object recognition, such as edge enhancement and detection. Our system, based on a soliton crystal Kerr optical micro-comb with a 49GHz spacing with >90 wavelengths in the C-band, is highly versatile, performing different functions without changing the physical hardware. These results highlight the potential for photonic processing based on Kerr microcombs for chip-scale fully programmable high-speed real time video processing for next generation technologies.


2015 ◽  
Vol 28 (2) ◽  
pp. 165-175
Author(s):  
Andrzej Napieralski ◽  
Jakub Cłapa ◽  
Kamil Grabowski ◽  
Małgorzata Napieralska ◽  
Wojciech Sankowski ◽  
...  

Paper presents the recent research in DMCS. The image processing and biometric research projects are presented. One of the key elements is an image acquisition and processing. The most recent biometric research projects are in the area of authentication in uncooperative scenarios and utilizing many different biometric traits (multimodal biometric systems). Also, the recent research on the removal of geometric distortion from live video streams using FPGA and GPU hardware is presented together with preliminary performance results.


2015 ◽  
pp. 540-566
Author(s):  
Vittoria Bruni ◽  
Domenico Vitulano

This chapter aims at analyzing the role of human early vision in image and video processing, with particular reference to face perception, recognition, and tracking. To this aim, the change of perspective in approaching image processing-based problems where the decoder (human eye) plays a central role is analysed and discussed. In particular, the main topics of this contribution are some important neurological results that have been successfully used in face detection and recognition, as well as those that seem to be promising in giving new and powerful tools for face tracking, which remains a less investigated topic from this new standpoint.


2021 ◽  
Author(s):  
David Moss

<p>Advanced image processing will be crucial for emerging technologies such as autonomous driving, where the requirement to quickly recognize and classify objects under rapidly changing, poor visibility environments in real time will be needed. Photonic technologies will be key for next-generation signal and information processing, due to their wide bandwidths of 10’s of Terahertz and versatility. Here, we demonstrate broadband real time analog image and video processing with an ultrahigh bandwidth photonic processor that is highly versatile and reconfigurable. It is capable of massively parallel processing over 10,000 video signals simultaneously in real time, performing key functions needed for object recognition, such as edge enhancement and detection. Our system, based on a soliton crystal Kerr optical micro-comb with a 49GHz spacing with >90 wavelengths in the C-band, is highly versatile, performing different functions without changing the physical hardware. These results highlight the potential for photonic processing based on Kerr microcombs for chip-scale fully programmable high-speed real time video processing for next generation technologies.</p>


Sign in / Sign up

Export Citation Format

Share Document