photonic processing
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 22)

H-INDEX

12
(FIVE YEARS 2)

Author(s):  
Madhu Gaire ◽  
Najma Khatoon ◽  
Binod Subedi ◽  
Douglas Chrisey

AbstractWe report the preparation of flexible and nano-porous iron oxide-reduced graphitic oxide (Fe2O3–rGO) electrodes using a novel photonic processing method. Due to this unique technique, high-temperature thermal processing could be accomplished on inexpensive and low-temperature substrates instantaneously as opposed to longer processing times of conventional thermal processing. The nano-porous morphology of the electrode not only accommodates the volume changes of the electrode but also facilitates the transport of the electrolyte ions into the electrodes. The as-prepared electrode showed excellent electrochemical performance with an initial specific capacitance of 179 F/g at 2 A/g. Moreover, it exhibited excellent specific capacitance retention after 5000 cycles (70%), revealing its superior cyclic stability. Along with having specific capacitance comparable to that of rigid electrodes, the as-prepared electrode is bendable and lightweight, signifying its potential application in foldable and wearable consumer electronic devices which require continuous energy supply while going through physical deformation. Graphic abstract


2021 ◽  
Author(s):  
David Moss

<p>Advanced image processing will be crucial for emerging technologies such as autonomous driving, where the requirement to quickly recognize and classify objects under rapidly changing, poor visibility environments in real time will be needed. Photonic technologies will be key for next-generation signal and information processing, due to their wide bandwidths of 10’s of Terahertz and versatility. Here, we demonstrate broadband real time analog image and video processing with an ultrahigh bandwidth photonic processor that is highly versatile and reconfigurable. It is capable of massively parallel processing over 10,000 video signals simultaneously in real time, performing key functions needed for object recognition, such as edge enhancement and detection. Our system, based on a soliton crystal Kerr optical micro-comb with a 49GHz spacing with >90 wavelengths in the C-band, is highly versatile, performing different functions without changing the physical hardware. These results highlight the potential for photonic processing based on Kerr microcombs for chip-scale fully programmable high-speed real time video processing for next generation technologies.</p>


2021 ◽  
Author(s):  
David Moss

<p>Advanced image processing will be crucial for emerging technologies such as autonomous driving, where the requirement to quickly recognize and classify objects under rapidly changing, poor visibility environments in real time will be needed. Photonic technologies will be key for next-generation signal and information processing, due to their wide bandwidths of 10’s of Terahertz and versatility. Here, we demonstrate broadband real time analog image and video processing with an ultrahigh bandwidth photonic processor that is highly versatile and reconfigurable. It is capable of massively parallel processing over 10,000 video signals simultaneously in real time, performing key functions needed for object recognition, such as edge enhancement and detection. Our system, based on a soliton crystal Kerr optical micro-comb with a 49GHz spacing with >90 wavelengths in the C-band, is highly versatile, performing different functions without changing the physical hardware. These results highlight the potential for photonic processing based on Kerr microcombs for chip-scale fully programmable high-speed real time video processing for next generation technologies.</p>


2021 ◽  
Author(s):  
Mengxi Tan ◽  
Xingyuan Xu ◽  
Andreas Boes ◽  
Bill Corcoran ◽  
Jiayang Wu ◽  
...  

Abstract Advanced image processing will be crucial for emerging technologies such as autonomous driving, where the requirement to quickly recognize and classify objects under rapidly changing, poor visibility environments in real time will be needed. Photonic technologies will be key for next-generation signal and information processing, due to their wide bandwidths of 10’s of Terahertz and versatility. Here, we demonstrate broadband real time analog image and video processing with an ultrahigh bandwidth photonic processor that is highly versatile and reconfigurable. It is capable of massively parallel processing over 10,000 video signals simultaneously in real time, performing key functions needed for object recognition, such as edge enhancement and detection. Our system, based on a soliton crystal Kerr optical micro-comb with a 49GHz spacing with >90 wavelengths in the C-band, is highly versatile, performing different functions without changing the physical hardware. These results highlight the potential for photonic processing based on Kerr microcombs for chip-scale fully programmable high-speed real time video processing for next generation technologies.


Author(s):  
mengxi tan ◽  
xingyuan xu ◽  
David Moss

Advanced image processing will be crucial for emerging technologies such as autonomous driving, where the requirement to quickly recognize and classify objects under rapidly changing, poor visibility environments in real time will be needed. Photonic technologies will be key for next-generation signal and information processing, due to their wide bandwidths of 10&rsquo;s of Terahertz and versatility. Here, we demonstrate broadband real time analog image and video processing with an ultrahigh bandwidth photonic processor that is highly versatile and reconfigurable. It is capable of massively parallel processing over 10,000 video signals simultaneously in real time, performing key functions needed for object recognition, such as edge enhancement and detection. Our system, based on a soliton crystal Kerr optical micro-comb with a 49GHz spacing with &gt;90 wavelengths in the C-band, is highly versatile, performing different functions without changing the physical hardware. These results highlight the potential for photonic processing based on Kerr microcombs for chip-scale fully programmable high-speed real time video processing for next generation technologies.


2021 ◽  
pp. 1-1
Author(s):  
Irene Estebanez ◽  
Shi Li ◽  
Janek Schwind ◽  
Ingo Fischer ◽  
Stephan Pachnicke ◽  
...  

2020 ◽  
Vol 639 ◽  
pp. A53
Author(s):  
G. Bourdarot ◽  
H. Guillet de Chatellus ◽  
J-P. Berger

Context. Infrared heterodyne interferometry has been proposed as a practical alternative for recombining a large number of telescopes over kilometric baselines in the mid-infrared. However, the current limited correlation capacities impose strong restrictions on the sensitivity of this appealing technique. Aims. In this paper, we propose to address the problem of transport and correlation of wide-bandwidth signals over kilometric distances by introducing photonic processing in infrared heterodyne interferometry. Methods. We describe the architecture of a photonic double-sideband correlator for two telescopes, along with the experimental demonstration of this concept on a proof-of-principle test bed. Results. We demonstrate the a posteriori correlation of two infrared signals previously generated on a two-telescope simulator in a double-sideband photonic correlator. A degradation of the signal-to-noise ratio of 13%, equivalent to a noise factor NF = 1.15, is obtained through the correlator, and the temporal coherence properties of our input signals are retrieved from these measurements. Conclusions. Our results demonstrate that photonic processing can be used to correlate heterodyne signals with a potentially large increase of detection bandwidth. These developments open the way to photonic processing of wide bandwidth signals for mid-infrared heterodyne interferometry, in particular for a large number of telescopes and for direct imager recombiners.


2020 ◽  
Vol 12 (28) ◽  
pp. 31591-31600
Author(s):  
Mohamad I. Nugraha ◽  
Emre Yarali ◽  
Yuliar Firdaus ◽  
Yuanbao Lin ◽  
Abdulrahman El-Labban ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document