Incorporating Flow Regimes Into Crushed-Rock Analysis to Better Understand Matrix Permeability and Pore Structure in Shales

Author(s):  
Dean Royer ◽  
◽  
Travis Hobbs ◽  
David Bonar
2021 ◽  
Author(s):  
Kai Cheng ◽  
◽  
J. Alex Zumberge ◽  
Stephanie E. Perry ◽  
Patrick M. Lasswell ◽  
...  

Legacy crushed rock analysis, as applied to unconventional formations, has shown great success in evaluating total porosity and water saturation over the previous three decades. The procedure of crushing rock into small particles improves the efficiency of fluid recovery and grain volume measurements in a laboratory environment. However, a caveat to crushed rock analysis is that water and volatile hydrocarbon evaporate from the rock during the preparatory crushing process, causing significant uncertainty in water saturation assessment. A modified crushed rock analysis incorporates nuclear magnetic resonance (NMR) measurements before and after the crushing process to quantify the volume of fluid loss. The advancements improve the overall total saturation quantification. However, challenges remain in the quantification of partitioned water and hydrocarbon loss currently derived from NMR spectrum along with its uncertainty. Furthermore, pressure decay permeability from crushed rock analysis has been reported to have two to three orders of magnitude difference between different labs. The calculated pressure decay permeability of the same rock could even vary several orders of magnitude difference with different crushed size, which questions the quality of the crushed pressure decay permeability. In this paper, we introduce an intact rock analysis workflow on unconventional cores for improved assessment of water saturation and enhanced quantification of fast pressure decay matrix permeability from intact rock. The workflow starts with acquisition of NMR T2 and bulk density measurements on the as-received state intact rock. Instead of crushing the rock, the intact rock is directly transferred to a retort chamber and heated to 300 °C for thermal extraction. The volumes of thermally-recovered fluids are quantified through an image-based process. The grain volume measurement and a second NMR T2 measurement are performed on post retort intact rock. The pressure decay curve during grain volume measurement is then used for calculating pressure decay matrix permeability. Total porosity is calculated using bulk volume and grain volume of the rock. Water saturation is quantified using total volume of recovered water. In addition, the twin as-received state rocks are processed through the crushed rock analysis workflow for an apple-to-apple comparison. Meanwhile, pressure decay permeability is cross-validated against the steady state permeability of the same sample. The introduced workflow has been successfully tested on different formations, including Bakken, Bone Spring, Eagle Ford, Cotton Valley, and Niobrara. The results show that total porosities calculated from intact rock analysis are consistent with total porosities from crushed rock analysis, while water saturations from the new workflow are average 8%SU (0.2–0.7%PU of bulk volume water) higher than those from the prior crushed rock workflow. The study also indicated that for some formations (e.g., Bone Spring) the fluid loss during crushing process is dominated by water, however, for some other formations (e.g., Bakken), hydrocarbon loss is significant. Pressure decay permeability quantified using intact rock analysis is also confirmed within an order of magnitude of steady state matrix permeability.


SPE Journal ◽  
1900 ◽  
pp. 1-13
Author(s):  
Kai Cheng ◽  
J. Alex Zumberge ◽  
Stephanie E. Perry ◽  
Patrick M. Lasswell ◽  
Themi Vodo

Summary Legacy crushed rock analysis, as applied to unconventional formations, has shown great success in evaluating total porosity and water saturation over the previous three decades. The procedure of crushing rock into small particles improves the efficiency of fluid recovery and grain volume measurements in a laboratory environment. However, a caveat to crushed rock analysis is that water and volatile hydrocarbons evaporate from the rock during the preparatory crushing process, causing significant uncertainty in water saturation assessment. A modified crushed rock analysis incorporates nuclear magnetic resonance (NMR) measurements before and after the crushing process to quantify the volume of fluid loss. The advancements improve the overall total saturation quantification. However, challenges remain in the quantification of partitioned water and hydrocarbon loss currently derived from the NMR spectrum along with its uncertainty. Furthermore, pressure decay permeability from crushed rock analysis has been reported to have two to three orders of magnitude difference between different laboratories. The calculated pressure decay permeability of the same rock could even vary by several orders of magnitude with different crushed sizes, which questions the quality of the crushed pressure decay permeability. In this paper, we introduce an intact rock analysis workflow on unconventional cores for improved assessment of water saturation and enhanced quantification of fast pressure decay matrix permeability from intact rock. The workflow starts with acquisition of NMR T2 and bulk density measurements on the as-received state intact rock. Instead of crushing the rock, the intact rock is directly transferred to a retort chamber and heated to 300°C for thermal extraction. The volumes of thermally recovered fluids are quantified through an image-based process. The grain volume measurement and a second NMR T2 measurement are performed on post-retort intact rock. The pressure decay curve during the grain volume measurement is then used for calculating the pressure decay matrix permeability. Total porosity is calculated using the bulk volume and grain volume of the rock. Water saturation is quantified using the total volume of recovered water. In addition, the twin as-received-state rocks are processed through the crushed rock analysis workflow for an apple-to-apple comparison. Meanwhile, the pressure decay permeability of the post-retort intact sample is cross-validated against the steady-state gas permeability of the same post-retortsample. The introduced workflow has been tested successfully on different formations, including Bakken, Bone Spring, Eagle Ford, Cotton Valley, and Niobrara. The results show that total porosities calculated from intact rock analysis are consistent with total porosities from crushed rock analysis, while water saturations from the new workflow are an average 8% saturation unit (SU) [0.2 to 0.7% porosity unit (PU) of bulk volume water (BVW)] higher than those from the prior crushed rock workflows. The study also indicates that for some formations (e.g., Bone Spring), the fluid loss during the crushing process is dominated by water; however, for some other formations (e.g., Bakken), the hydrocarbon loss is significant. Pressure decay permeability quantified using intact rock analysis is also confirmed within an order of magnitude of steady-state matrix permeability.


2022 ◽  
Author(s):  
Mingkun Pang ◽  
Tianjun Zhang ◽  
Rongtao Liu ◽  
Haotian Wang

Abstract Particle loss is the root cause for the occurrence of Karst Collapse Pillars (KCP) sudden water events. The pore adjustment of KCP filler will further induce seepage destabilization, and it is also a process that sudden water catastrophe must go through. In order to investigate the direct relationship between stress conditions, water pressure conditions, and gradation structure on the pore structure of rock samples, the steady-state percolation method was used to investigate the percolation test system of variable-mass crushed rock masses. The results show that: 1) the structural characteristics of rock grains under the same stress environment are closely related to their extrusion fragmentation process and the softening and scouring effect of water. Rubbing, rotating, fracturing, grinding and plugging are the main forms of action of their intergranular action. 2) The filling particles before and after the loss meet the fractal law and have fractal characteristics. 3) The percentage of fine particles in the whole process of infiltration loss is as high as 34.4%. The adjustment of pore structure is related to the particle size gradation, and the reciprocal action of water flow will form a stable water-conducting channel. 4) The sudden water process of the specimen under particle loss can be divided into three stages: initial seepage, catastrophic destabilization and pipe flow surge.


2019 ◽  
Author(s):  
Melanie Durand ◽  
Anton Nikitin ◽  
Adam McMullen ◽  
Aidan Blount ◽  
Brian Driskill ◽  
...  

2021 ◽  
Author(s):  
Stephanie E. Perry ◽  
◽  
J. Alex Zumberge ◽  
Kai Cheng ◽  
◽  
...  

Subsurface characterization of fluid volumes is typically constrained and validated by core analytical fluid saturation measurement techniques (example Dean-Stark or Open Retort methodology). As production in resource plays has progressed over time, it has been noted that many of these methods have a large error when compared to production data. A large source of the error seems to be that water saturations in tight rocks have been consistently underestimated in the traditional laboratory measurement techniques. Operators need improved fluid saturation measurements to better constrain their log-based oil-in-place estimates and forward-looking production trends. The overall goal of this study is to test a new laboratory workflow for fluid saturation quantification. Recent advancements have led to an innovative methodology where a closed retort laboratory technique is applied to samples from lithological rock types in the Williston, Uinta and Denever-Julesburg (DJ) basins. This new technique is specifically designed to better quantify and validate water measurements throughout the tight rock analysis process, as well as improved oil recovery and built-in prediction. A comparison of standard crushed rock analysis employing Dean-Stark saturation methods is compared to the closed retort results and observations discussed. Results will also be compared against additional laboratory methods that validate the results such as geochemistry and nuclear magnetic resonance. Finally, open-hole wireline logs will be utilized to quantify the impact on total water saturation and the oil-in place estimates based on the improved accuracy of the closed retort technique.


Author(s):  
C. A. Callender ◽  
Wm. C. Dawson ◽  
J. J. Funk

The geometric structure of pore space in some carbonate rocks can be correlated with petrophysical measurements by quantitatively analyzing binaries generated from SEM images. Reservoirs with similar porosities can have markedly different permeabilities. Image analysis identifies which characteristics of a rock are responsible for the permeability differences. Imaging data can explain unusual fluid flow patterns which, in turn, can improve production simulation models.Analytical SchemeOur sample suite consists of 30 Middle East carbonates having porosities ranging from 21 to 28% and permeabilities from 92 to 2153 md. Engineering tests reveal the lack of a consistent (predictable) relationship between porosity and permeability (Fig. 1). Finely polished thin sections were studied petrographically to determine rock texture. The studied thin sections represent four petrographically distinct carbonate rock types ranging from compacted, poorly-sorted, dolomitized, intraclastic grainstones to well-sorted, foraminiferal,ooid, peloidal grainstones. The samples were analyzed for pore structure by a Tracor Northern 5500 IPP 5B/80 image analyzer and a 80386 microprocessor-based imaging system. Between 30 and 50 SEM-generated backscattered electron images (frames) were collected per thin section. Binaries were created from the gray level that represents the pore space. Calculated values were averaged and the data analyzed to determine which geological pore structure characteristics actually affect permeability.


2020 ◽  
Author(s):  
Peng Xia ◽  
Hongnan Li ◽  
Yong Fu ◽  
Wenlang Qiao ◽  
Chuan Guo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document