rock analysis
Recently Published Documents


TOTAL DOCUMENTS

194
(FIVE YEARS 35)

H-INDEX

19
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Oleg Dinariev ◽  
Nikolay Evseev

Abstract The computational method for gas-condensate phase permeabilities is presented using digital rock analysis. The proposed method combines: a) construction of high-resolution tomographic images of the pore space; b) development of compositional model of a gas-condensate mixture at pore-scale including rheology, fluid-fluid and fluid-rock interfacial tension coefficients, and thermodynamic and kinetic properties of fluid phases; c) 3D pore-scale modeling of multiphase transport and interfacial chemical component exchange using the density functional hydrodynamics numerical simulator. This digital rock analysis workflow is applied to the gas-condensate transport at pore-scale. The numerical simulations are carried out using the 3D digital rock model constructed by X-ray microCT imaging of the rock pore structure. By specifying different gas and condensate fractions and injection rates it has been possible to obtain computationally 3D saturation distribution fields and the phase permeabilities. The results of 3D density functional hydrodynamic simulations provide the comprehensive description of gas-condensate mixture at pore-scale including hydrodynamic desaturation effects and phase transition kinetic phenomena. It is demonstrated that condensate distribution in pores, phase mobility thresholds and phase permeabilities are dependent on wettability properties and flow rates. It is shown that condensate composition in individual pores is also dynamically dependent on flow regimes. These results can be used in field development planning for the improved evaluation of condensate banking in the vicinity of production wells and condensate losses in the reservoir.


2021 ◽  
Author(s):  
Alexander Avdonin ◽  
Mohammad Ebadi ◽  
Vladislav Krutko

Abstract Digital rock analysis has proven to be useful for the prediction of petrophysical properties of conventional reservoirs, where the pore space is captured well by a modern µCT scanner with a resolution of 1-5 µm. Nevertheless, this resolution is not enough to accurately capture the pore space of tight (low-permeable) rock samples. As a result, derived digital rock models do not reflect the real rock topology, and permeability predictions yield unreliable results. Our approach deploys high-contrast µCT scanning technique and Focused Ion Beam milling combined with Scanning Electron Microscopy to improve the quality of digital rock models and, hence, the permeability prediction. This workflow is successfully applied to a low-permeable rock sample of Achimov deposits. The computed permeability compares well to the experimental value.


2021 ◽  
Author(s):  
Ivan Yakimchuk ◽  
Dmitry Korobkov ◽  
Vera Pletneva ◽  
Olga Ridzel ◽  
Igor Varfolomeev ◽  
...  

Abstract The work demonstrates results of reservoir properties evaluation using a complex of laboratory and multiscale digital core or digital rock analysis. Rock properties (including relative phase permeabilities) were studied at different scales: from nanometers to meter (whole core). For the first time, cores from Turonian formation were characterized with digital rock analysis, which provided stationary relative permeabilities for gas-water under reservoir conditions. Lab determination of relative permeabilities was rather challenging for some low-permeability samples (<0.02 md), while digital analysis was successful even for them. Gas recovery in a depletion mode from different rock types was studied on a whole core model for different capillary pressures. Such studies are not conducted in the lab.


2021 ◽  
Vol 139 (2) ◽  
pp. 301-325 ◽  
Author(s):  
L. C. Ruspini ◽  
P. E. Øren ◽  
S. Berg ◽  
S. Masalmeh ◽  
T. Bultreys ◽  
...  
Keyword(s):  

2021 ◽  
pp. 104281
Author(s):  
Yong Cheng ◽  
Yuzhao Hu ◽  
Di Wang ◽  
Pengpeng Wang ◽  
Piyou Li ◽  
...  

2021 ◽  
Author(s):  
Kai Cheng ◽  
◽  
J. Alex Zumberge ◽  
Stephanie E. Perry ◽  
Patrick M. Lasswell ◽  
...  

Legacy crushed rock analysis, as applied to unconventional formations, has shown great success in evaluating total porosity and water saturation over the previous three decades. The procedure of crushing rock into small particles improves the efficiency of fluid recovery and grain volume measurements in a laboratory environment. However, a caveat to crushed rock analysis is that water and volatile hydrocarbon evaporate from the rock during the preparatory crushing process, causing significant uncertainty in water saturation assessment. A modified crushed rock analysis incorporates nuclear magnetic resonance (NMR) measurements before and after the crushing process to quantify the volume of fluid loss. The advancements improve the overall total saturation quantification. However, challenges remain in the quantification of partitioned water and hydrocarbon loss currently derived from NMR spectrum along with its uncertainty. Furthermore, pressure decay permeability from crushed rock analysis has been reported to have two to three orders of magnitude difference between different labs. The calculated pressure decay permeability of the same rock could even vary several orders of magnitude difference with different crushed size, which questions the quality of the crushed pressure decay permeability. In this paper, we introduce an intact rock analysis workflow on unconventional cores for improved assessment of water saturation and enhanced quantification of fast pressure decay matrix permeability from intact rock. The workflow starts with acquisition of NMR T2 and bulk density measurements on the as-received state intact rock. Instead of crushing the rock, the intact rock is directly transferred to a retort chamber and heated to 300 °C for thermal extraction. The volumes of thermally-recovered fluids are quantified through an image-based process. The grain volume measurement and a second NMR T2 measurement are performed on post retort intact rock. The pressure decay curve during grain volume measurement is then used for calculating pressure decay matrix permeability. Total porosity is calculated using bulk volume and grain volume of the rock. Water saturation is quantified using total volume of recovered water. In addition, the twin as-received state rocks are processed through the crushed rock analysis workflow for an apple-to-apple comparison. Meanwhile, pressure decay permeability is cross-validated against the steady state permeability of the same sample. The introduced workflow has been successfully tested on different formations, including Bakken, Bone Spring, Eagle Ford, Cotton Valley, and Niobrara. The results show that total porosities calculated from intact rock analysis are consistent with total porosities from crushed rock analysis, while water saturations from the new workflow are average 8%SU (0.2–0.7%PU of bulk volume water) higher than those from the prior crushed rock workflow. The study also indicated that for some formations (e.g., Bone Spring) the fluid loss during crushing process is dominated by water, however, for some other formations (e.g., Bakken), hydrocarbon loss is significant. Pressure decay permeability quantified using intact rock analysis is also confirmed within an order of magnitude of steady state matrix permeability.


2021 ◽  
Author(s):  
Stephanie E. Perry ◽  
◽  
J. Alex Zumberge ◽  
Kai Cheng ◽  
◽  
...  

Subsurface characterization of fluid volumes is typically constrained and validated by core analytical fluid saturation measurement techniques (example Dean-Stark or Open Retort methodology). As production in resource plays has progressed over time, it has been noted that many of these methods have a large error when compared to production data. A large source of the error seems to be that water saturations in tight rocks have been consistently underestimated in the traditional laboratory measurement techniques. Operators need improved fluid saturation measurements to better constrain their log-based oil-in-place estimates and forward-looking production trends. The overall goal of this study is to test a new laboratory workflow for fluid saturation quantification. Recent advancements have led to an innovative methodology where a closed retort laboratory technique is applied to samples from lithological rock types in the Williston, Uinta and Denever-Julesburg (DJ) basins. This new technique is specifically designed to better quantify and validate water measurements throughout the tight rock analysis process, as well as improved oil recovery and built-in prediction. A comparison of standard crushed rock analysis employing Dean-Stark saturation methods is compared to the closed retort results and observations discussed. Results will also be compared against additional laboratory methods that validate the results such as geochemistry and nuclear magnetic resonance. Finally, open-hole wireline logs will be utilized to quantify the impact on total water saturation and the oil-in place estimates based on the improved accuracy of the closed retort technique.


2021 ◽  
Vol 11 (6) ◽  
pp. 2381-2387
Author(s):  
Omar A. Almisned ◽  
Naif B. Alqahtani

AbstractAs more engineering projects and activities are taking place on and around weak rocks, it is becoming more important to study and characterize them. Since regular practices of rock mechanical testing are not effective for weak rocks, special laboratory tests and measurements were performed to characterize the Alkharj Saudi weak sandstone rock which is a clastic rock dominantly sandy limestone and sandstone. Test results are presented in this paper. Porosity, permeability, and mechanical properties (stress, strain, Poisson's ratio, confined compressive strength and unconfined compressive strength) were obtained and then used to characterize the proposed weak rock. This paper provides a mean of classifying weak soft rocks despite encountered problems in handling and testing such materials.


Sign in / Sign up

Export Citation Format

Share Document