ADAPTATION OF CRUSHED ROCK ANALYSIS TO INTACT ROCK ANALYSIS FOR IMPROVING WATER SATURATION ASSESSMENT AND FAST PRESSURE DECAY PERMEABILITY QUANTIFICATION

2021 ◽  
Author(s):  
Kai Cheng ◽  
◽  
J. Alex Zumberge ◽  
Stephanie E. Perry ◽  
Patrick M. Lasswell ◽  
...  

Legacy crushed rock analysis, as applied to unconventional formations, has shown great success in evaluating total porosity and water saturation over the previous three decades. The procedure of crushing rock into small particles improves the efficiency of fluid recovery and grain volume measurements in a laboratory environment. However, a caveat to crushed rock analysis is that water and volatile hydrocarbon evaporate from the rock during the preparatory crushing process, causing significant uncertainty in water saturation assessment. A modified crushed rock analysis incorporates nuclear magnetic resonance (NMR) measurements before and after the crushing process to quantify the volume of fluid loss. The advancements improve the overall total saturation quantification. However, challenges remain in the quantification of partitioned water and hydrocarbon loss currently derived from NMR spectrum along with its uncertainty. Furthermore, pressure decay permeability from crushed rock analysis has been reported to have two to three orders of magnitude difference between different labs. The calculated pressure decay permeability of the same rock could even vary several orders of magnitude difference with different crushed size, which questions the quality of the crushed pressure decay permeability. In this paper, we introduce an intact rock analysis workflow on unconventional cores for improved assessment of water saturation and enhanced quantification of fast pressure decay matrix permeability from intact rock. The workflow starts with acquisition of NMR T2 and bulk density measurements on the as-received state intact rock. Instead of crushing the rock, the intact rock is directly transferred to a retort chamber and heated to 300 °C for thermal extraction. The volumes of thermally-recovered fluids are quantified through an image-based process. The grain volume measurement and a second NMR T2 measurement are performed on post retort intact rock. The pressure decay curve during grain volume measurement is then used for calculating pressure decay matrix permeability. Total porosity is calculated using bulk volume and grain volume of the rock. Water saturation is quantified using total volume of recovered water. In addition, the twin as-received state rocks are processed through the crushed rock analysis workflow for an apple-to-apple comparison. Meanwhile, pressure decay permeability is cross-validated against the steady state permeability of the same sample. The introduced workflow has been successfully tested on different formations, including Bakken, Bone Spring, Eagle Ford, Cotton Valley, and Niobrara. The results show that total porosities calculated from intact rock analysis are consistent with total porosities from crushed rock analysis, while water saturations from the new workflow are average 8%SU (0.2–0.7%PU of bulk volume water) higher than those from the prior crushed rock workflow. The study also indicated that for some formations (e.g., Bone Spring) the fluid loss during crushing process is dominated by water, however, for some other formations (e.g., Bakken), hydrocarbon loss is significant. Pressure decay permeability quantified using intact rock analysis is also confirmed within an order of magnitude of steady state matrix permeability.

SPE Journal ◽  
1900 ◽  
pp. 1-13
Author(s):  
Kai Cheng ◽  
J. Alex Zumberge ◽  
Stephanie E. Perry ◽  
Patrick M. Lasswell ◽  
Themi Vodo

Summary Legacy crushed rock analysis, as applied to unconventional formations, has shown great success in evaluating total porosity and water saturation over the previous three decades. The procedure of crushing rock into small particles improves the efficiency of fluid recovery and grain volume measurements in a laboratory environment. However, a caveat to crushed rock analysis is that water and volatile hydrocarbons evaporate from the rock during the preparatory crushing process, causing significant uncertainty in water saturation assessment. A modified crushed rock analysis incorporates nuclear magnetic resonance (NMR) measurements before and after the crushing process to quantify the volume of fluid loss. The advancements improve the overall total saturation quantification. However, challenges remain in the quantification of partitioned water and hydrocarbon loss currently derived from the NMR spectrum along with its uncertainty. Furthermore, pressure decay permeability from crushed rock analysis has been reported to have two to three orders of magnitude difference between different laboratories. The calculated pressure decay permeability of the same rock could even vary by several orders of magnitude with different crushed sizes, which questions the quality of the crushed pressure decay permeability. In this paper, we introduce an intact rock analysis workflow on unconventional cores for improved assessment of water saturation and enhanced quantification of fast pressure decay matrix permeability from intact rock. The workflow starts with acquisition of NMR T2 and bulk density measurements on the as-received state intact rock. Instead of crushing the rock, the intact rock is directly transferred to a retort chamber and heated to 300°C for thermal extraction. The volumes of thermally recovered fluids are quantified through an image-based process. The grain volume measurement and a second NMR T2 measurement are performed on post-retort intact rock. The pressure decay curve during the grain volume measurement is then used for calculating the pressure decay matrix permeability. Total porosity is calculated using the bulk volume and grain volume of the rock. Water saturation is quantified using the total volume of recovered water. In addition, the twin as-received-state rocks are processed through the crushed rock analysis workflow for an apple-to-apple comparison. Meanwhile, the pressure decay permeability of the post-retort intact sample is cross-validated against the steady-state gas permeability of the same post-retortsample. The introduced workflow has been tested successfully on different formations, including Bakken, Bone Spring, Eagle Ford, Cotton Valley, and Niobrara. The results show that total porosities calculated from intact rock analysis are consistent with total porosities from crushed rock analysis, while water saturations from the new workflow are an average 8% saturation unit (SU) [0.2 to 0.7% porosity unit (PU) of bulk volume water (BVW)] higher than those from the prior crushed rock workflows. The study also indicates that for some formations (e.g., Bone Spring), the fluid loss during the crushing process is dominated by water; however, for some other formations (e.g., Bakken), the hydrocarbon loss is significant. Pressure decay permeability quantified using intact rock analysis is also confirmed within an order of magnitude of steady-state matrix permeability.


2019 ◽  
Author(s):  
Melanie Durand ◽  
Anton Nikitin ◽  
Adam McMullen ◽  
Aidan Blount ◽  
Brian Driskill ◽  
...  

2021 ◽  
Author(s):  
Stephanie E. Perry ◽  
◽  
J. Alex Zumberge ◽  
Kai Cheng ◽  
◽  
...  

Subsurface characterization of fluid volumes is typically constrained and validated by core analytical fluid saturation measurement techniques (example Dean-Stark or Open Retort methodology). As production in resource plays has progressed over time, it has been noted that many of these methods have a large error when compared to production data. A large source of the error seems to be that water saturations in tight rocks have been consistently underestimated in the traditional laboratory measurement techniques. Operators need improved fluid saturation measurements to better constrain their log-based oil-in-place estimates and forward-looking production trends. The overall goal of this study is to test a new laboratory workflow for fluid saturation quantification. Recent advancements have led to an innovative methodology where a closed retort laboratory technique is applied to samples from lithological rock types in the Williston, Uinta and Denever-Julesburg (DJ) basins. This new technique is specifically designed to better quantify and validate water measurements throughout the tight rock analysis process, as well as improved oil recovery and built-in prediction. A comparison of standard crushed rock analysis employing Dean-Stark saturation methods is compared to the closed retort results and observations discussed. Results will also be compared against additional laboratory methods that validate the results such as geochemistry and nuclear magnetic resonance. Finally, open-hole wireline logs will be utilized to quantify the impact on total water saturation and the oil-in place estimates based on the improved accuracy of the closed retort technique.


2017 ◽  
Vol 54 (3) ◽  
pp. 181-201
Author(s):  
Rebecca Johnson ◽  
Mark Longman ◽  
Brian Ruskin

The Three Forks Formation, which is about 230 ft thick along the southern Nesson Anticline (McKenzie County, ND), has four “benches” with distinct petrographic and petrophysical characteristics that impact reservoir quality. These relatively clean benches are separated by slightly more illitic (higher gamma-ray) intervals that range in thickness from 10 to 20 ft. Here we compare pore sizes observed in scanning electron microscope (SEM) images of the benches to the total porosity calculated from binned precession decay times from a suite of 13 nuclear magnetic resonance (NMR) logs in the study area as well as the logarithmic mean of the relaxation decay time (T2 Log Mean) from these NMR logs. The results show that the NMR log is a valid tool for quantifying pore sizes and pore size distributions in the Three Forks Formation and that the T2 Log Mean can be correlated to a range of pore sizes within each bench of the Three Forks Formation. The first (shallowest) bench of the Three Forks is about 35 ft thick and consists of tan to green silty and shaly laminated dolomite mudstones. It has good reservoir characteristics in part because it was affected by organic acids and received the highest oil charge from the overlying lower Bakken black shale source rocks. The 13 NMR logs from the study area show that it has an average of 7.5% total porosity (compared to 8% measured core porosity), and ranges from 5% to 10%. SEM study shows that both intercrystalline pores and secondary moldic pores formed by selective partial dissolution of some grains are present. The intercrystalline pores are typically triangular and occur between euhedral dolomite rhombs that range in size from 10 to 20 microns. The dolomite crystals have distinct iron-rich (ferroan) rims. Many of the intercrystalline pores are partly filled with fibrous authigenic illite, but overall pore size typically ranges from 1 to 5 microns. As expected, the first bench has the highest oil saturations in the Three Forks Formation, averaging 50% with a range from 30% to 70%. The second bench is also about 35 ft thick and consists of silty and shaly dolomite mudstones and rip-up clast breccias with euhedral dolomite crystals that range in size from 10 to 25 microns. Its color is quite variable, ranging from green to tan to red. The reservoir quality of the second bench data set appears to change based on proximity to the Nesson anticline. In the wells off the southeast flank of the Nesson anticline, the water saturation averages 75%, ranging from 64% to 91%. On the crest of the Nesson anticline, the water saturation averages 55%, ranging from 40% to 70%. NMR porosity is consistent across the entire area of interest - averaging 7.3% and ranging from 5% to 9%. Porosity observed from samples collected on the southeast flank of the Nesson Anticline is mainly as intercrystalline pores that have been extensively filled with chlorite clay platelets. In the water saturated southeastern Nesson Anticline, this bench contains few or no secondary pores and the iron-rich rims on the dolomite crystals are less developed than those in the first bench. The chlorite platelets in the intercrystalline pores reduce average pore size to 500 to 800 nanometers. The third bench is about 55 ft thick and is the most calcareous of the Three Forks benches with 20 to 40% calcite and a proportionate reduction in dolomite content near its top. It is also quite silty and shaly with a distinct reddish color. Its dolomite crystals are 20 to 50 microns in size and partly abraded and dissolved. Ferroan dolomite rims are absent. This interval averages 7.1% porosity and ranges from 5% to 9%, but the pores average just 200 nanometers in size and occur mainly as microinterparticle pores between illite flakes in intracrystalline pores in the dolomite crystals. This interval has little or no oil saturation on the southern Nesson Anticline. Unlike other porosity tools, the NMR tool is a lithology independent measurement. The alignment of hydrogen nuclei to the applied magnetic field and the subsequent return to incoherence are described by two decay time constants, longitudinal relaxation time (T1) and transverse relaxation time (T2). T2 is essentially the rate at which hydrogen nuclei lose alignment to the external magnetic field. The logarithmic mean of T2 (T2 Log Mean) has been correlated to pore-size distribution. In this study, we show that the assumption that T2 Log Mean can be used as a proxy for pore-size distribution changes is valid in the Three Forks Formation. While the NMR total porosity from T2 remains relatively consistent in the three benches of the Three Forks, there are significant changes in the T2 Log Mean from bench to bench. There is a positive correlation between changes in T2 Log Mean and average pore size measured on SEM samples. Study of a “type” well, QEP’s Ernie 7-2-11 BHD (Sec. 11, T149N, R95W, McKenzie County), shows that the 1- to 5-micron pores in the first bench have a T2 Log Mean relaxation time of 10.2 msec, whereas the 500- to 800-nanometer pores in the chlorite-filled intercrystalline pores in the second bench have a T2 Log Mean of 4.96 msec. This compares with a T2 Log Mean of 2.86 msec in 3rd bench where pores average just 200 nanometers in size. These data suggest that the NMR log is a useful tool for quantifying average pore size in the various benches of the Three Forks Formation.


1996 ◽  
Vol 36 (1) ◽  
pp. 130 ◽  
Author(s):  
J. Crowley ◽  
E.S. Collins

The Stag Oilfield is located approximately 65 km northwest of Dampier and 25 km southwest of the Wandoo Oilfield near the southeastern margin of the Dampier Sub-basin, on the North West Shelf of Western Australia,.The Stag-1 discovery well was funded by Apache Energy Ltd (formerly Hadson Energy Ltd), Santos Ltd and Globex Far East in June 1993 under a farmin agreement with BHP Petroleum Pty Ltd, Norcen International Ltd and Phillips Australian Oil Co. The well intersected a gross oil column of 15.5 m within the Lower Cretaceous M. australis Sandstone. The oil column intersected at Stag-1 was thicker than the pre-drill mapped structural closure.A 3D seismic survey was acquired over the Stag area in November 1993 to define the size and extent of the accumulation. Following processing and interpretation of the data, an exploration and appraisal program was undertaken. The appraisal wells confirmed that the oil column exceeds mapped structural closure and that there is a stratigraphic component to the trapping mechanism. Two of the appraisal wells were tested; Stag-2 flowed 1050 BOPD from a 5 m vertical section and Stag-6 flowed at 6300 BOPD on pump from a 1030 m horizontal section.Evaluation of the well data indicates the M. australis Sandstone at the Stag Oilfield is genetically related to the reservoir section at the Wandoo Oilfield. The reservoir consists of bioturbated glauconitic subarkose and is interpreted to represent deposition that occurred on a quiescent broad marine shelf. Quantitative evaluation of the oil-in-place has been hampered by the effects of glauconite on wireline log, routine and special core analysis data. Petrophysical evaluation indicates that core porosities and water saturations derived from capillary pressure measurements more closely match total porosity and total water saturation than effective porosity and effective water saturation.A development plan is currently being prepared and additional appraisal drilling in the field is expected.


Geophysics ◽  
2017 ◽  
Vol 82 (1) ◽  
pp. D13-D30 ◽  
Author(s):  
Edwin Ortega ◽  
Mathilde Luycx ◽  
Carlos Torres-Verdín ◽  
William E. Preeg

Recent advances in logging-while-drilling sigma measurements include three-detector thermal-neutron and gamma-ray decay measurements with different radial sensitivities to assess the presence of invasion. We have developed an inversion-based work flow for the joint interpretation of multidetector neutron, density, and sigma logs to reduce invasion, shoulder-bed, and well-deviation effects in the estimation of porosity, water saturation, and hydrocarbon type, whenever the invasion is shallow. The procedure begins with a correction for matrix and fluid effects on neutron and density-porosity logs to estimate porosity. Multidetector time decays are then used to assess the radial length of the invasion and estimate the virgin-zone sigma while simultaneously reducing shoulder-bed and well-deviation effects. Density and neutron porosity logs are corrected for invasion and shoulder-bed effects using two-detector density and neutron measurements with the output from the time-decay (sigma) inversion. The final step invokes a nuclear solver in which corrected sigma, inverse of migration length, and density in the virgin zone are used to estimate water saturation and fluid type. The fluid type is assessed with a flash calculation and Schlumberger’s Nuclear Parameter calculation code to account for the nuclear properties of different types of hydrocarbon and water as a function of pressure, temperature, and salinity. Results indicate that accounting for invasion effects is necessary when using density and neutron logs for petrophysical interpretation beyond the calculation of total porosity. Synthetic and field examples indicate that the mitigation of invasion effects becomes important in the case of salty mud filtrate invading gas-bearing formations. The advantage of the developed inversion-based interpretation method is its ability to estimate layer-by-layer petrophysical, compositional, and fluid properties that honor multiple nuclear measurements, their tool physics, and their associated borehole geometrical and environmental effects.


2013 ◽  
Vol 295-298 ◽  
pp. 2842-2847
Author(s):  
Yong Ming Li ◽  
Pan Luo ◽  
Jin Zhou Zhao ◽  
Ya Zhou Li

Gravels and natural fractures in glutenite formation have significant impacts on fluid loss when hydraulic fracturing is conducted. Matrix permeability and porosity were computed through Kozeny-Carman equation when gravels contents and size are known. Then a pebbly dual permeability dual porosity model was used to quantitatively evaluate the fracturing fluids loss in glutenite formation. Filtration rate curves could be plotted from the pressure distribution function which was obtained through orthogonal transformation method. Different gravels contents and multi-size-gravels were taken into accounts in this paper. The results show that both filtration rates in matrix and natural fractures decrease with increasing gravels content in matrix; and the filtration rate in matrix decrease much more. Impacts of gravel content are more significant than impacts of gravel size. Natural fractures have much more significant impacts than gravels.


2014 ◽  
Vol 534 ◽  
pp. 39-51
Author(s):  
Zheng Hong Tian ◽  
Jing Wu Bu

This paper focuses on the pore structure parameters of mortars produced with manufactured sand and natural sand via water saturation and MIP methods. Test results show that, total porosity, as well as compressive strength, of manufactured sand mortar, is higher than that of natural sand mortar at fixed w/c and s/c ratio. Furthermore, considerable volume of large pores present in specimens of manufactured sand at higher w/c ratio rather not at the lower w/c ratio, which caused by the larger binder-aggregate interface. Manufactured fine aggregate in mortar probably accelerate hydrated reaction of cement, which result in the most probable pore size is finer than that of natural sand mortar. It can be concluded that the threshold region becomes flatten and threshold radius increases due to the aggregate volume concentration rises. Finally, a new theoretical model with a double-lognormal distribution function is demonstrated to be reasonable to fit pore size distribution in mortars.


Sign in / Sign up

Export Citation Format

Share Document