DETERMINATION OF AEROSOLS POLLUTANTS ON MEMBRANES. EVALUATION OF PARTICLE COLLECTION EFFICIENCY AND LEAD CONCENTRATION IN AEROSOLS

2011 ◽  
Vol 10 (5) ◽  
pp. 621-627
Author(s):  
Mihaela Emanuela Craciun ◽  
Niculina Nina Badea ◽  
Ovidiu Gales ◽  
Florian Aldea
1995 ◽  
Vol 30 (2) ◽  
pp. 299-304 ◽  
Author(s):  
Cameron D. Skinner ◽  
Eric D. Salin

Abstract Soil lead levels were determined on and around a former battery manufacturing site. Lead concentrations ranging from 120 ppm to 5.1’ were found. The highest concentrations were found close to the factory site. When it was possible to obtain samples over a continuous depth range, it was found that lead concentration decreased with depth and that it increased above underground foundations.


2009 ◽  
Vol 74 (4) ◽  
pp. 599-610 ◽  
Author(s):  
Mohammad Bagher Gholivand ◽  
Alireza Pourhossein ◽  
Mohsen Shahlaei

A sensitive and selective procedure is presented for the voltammetric determination of lead. The procedure involves an adsorptive accumulation of lead L-3-(3,4-dihydroxyphenyl)alanine (LDOPA) on a hanging mercury drop electrode, followed by a stripping voltammetric measurement of reduction current of an adsorbed complex at –0.15 V (vs Ag|AgCl). Optimum conditions for lead analysis include pH 8.5, 80 μM LDOPA and accumulation potential –0.15 V (vs Ag|AgCl). The peak currents are proportional to the lead concentration 1–300 nmol l–1 with a detection limit of 0.6 nmol l–1 and accumulation time 60 s. The method was used for the determination of lead in blood, dry tea and also in waters.


2010 ◽  
Vol 10 (12) ◽  
pp. 5685-5705 ◽  
Author(s):  
X. Wang ◽  
L. Zhang ◽  
M. D. Moran

Abstract. Current theoretical and empirical size-resolved parameterizations of the scavenging coefficient (Λ), a parameter commonly used in aerosol transport models to describe below-cloud particle scavenging by rain, have been reviewed in detail and compared with available field and laboratory measurements. Use of different formulations for raindrop-particle collection efficiency can cause uncertainties in size-resolved Λ values of one to two orders of magnitude for particles in the 0.01–3 μm diameter range. Use of different formulations of raindrop number size distribution can cause Λ values to vary by a factor of 3 to 5 for all particle sizes. The uncertainty in Λ caused by the use of different droplet terminal velocity formulations is generally small than a factor of 2. The combined uncertainty due to the use of different formulations of raindrop-particle collection efficiency, raindrop size spectrum, and raindrop terminal velocity in the current theoretical framework is not sufficient to explain the one to two order of magnitude under-prediction of Λ for the theoretical calculations relative to the majority of field measurements. These large discrepancies are likely caused by additional known physical processes (i.e, turbulent transport and mixing, cloud and aerosol microphysics) that influence field data but that are not considered in current theoretical Λ parameterizations. The predicted size-resolved particle concentrations using different theoretical Λ parameterization can differ by up to a factor of 2 for particles smaller than 0.01 μm and by a factor of >10 for particles larger than 3 μm after 2–5 mm of rain. The predicted bulk mass and number concentrations (integrated over the particle size distribution) can differ by a factor of 2 between theoretical and empirical Λ parameterizations after 2–5 mm of moderate intensity rainfall.


2007 ◽  
Vol 72 (6) ◽  
pp. 585-590 ◽  
Author(s):  
Morteza Talebi ◽  
Homeyra Safigholi

Arapid, simple, and sensitive procedure based on modified solid phase extraction was developed for the pre-concentration and determination of trace amount of lead in water resources. Lead was reacted with ammonium pyrrolidinedithiocarbamate (APDC) to make a complex. The complex was then collected in a column packed with surfactant-coated alumina. The parameters affecting the collection efficiency and desorption rate of the lead complexes from the column were investigated and optimized. The collection efficiency of the lead complex on the adsorbent was excellent under the optimized conditions. The results obtained from the recovery test showed the capability and reliability of the method for the analysis of trace amounts of lead. The proposed pre-concentration procedure made it possible to apply conventional flame atomic absorption spectrometry (FAAS) for the sensitive determination of trace amounts of lead in water resources. .


2006 ◽  
Vol 64 (3-4) ◽  
pp. 259-262 ◽  
Author(s):  
Janusz Podliński ◽  
Jarosław Dekowski ◽  
Jerzy Mizeraczyk ◽  
Drazena Brocilo ◽  
Jen-Shih Chang

1997 ◽  
Vol 28 ◽  
pp. S281-S282 ◽  
Author(s):  
Akinori Zukeran ◽  
Paul C. Looy ◽  
Alexander A. Berezin ◽  
Jen-Shih Chang ◽  
Tairo Ito

Sign in / Sign up

Export Citation Format

Share Document