ammonium pyrrolidinedithiocarbamate
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 4)

H-INDEX

13
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Rebecca E Hughes ◽  
Richard JR Elliott ◽  
Xiaodun Li ◽  
Alison F Munro ◽  
Ashraff Makda ◽  
...  

Background and Aims: Oesophageal adenocarcinoma (OAC) is of increasing global concern due to increasing incidence, a lack of effective treatments, and poor prognosis. Therapeutic target discovery and clinical trials have been hindered by the heterogeneity of the disease, lack of driver mutations, and the dominance of large-scale genomic rearrangements. In this work we have characterised three potent and selective hit compounds identified in an innovative high-content phenotypic screening assay. The three hits include two approved drugs; elesclomol and disulfiram, and another small molecule compound, ammonium pyrrolidinedithiocarbamate. We uncover their mechanism of action, discover a targetable vulnerability, and gain insight into drug sensitivity for biomarker-based clinical trials in OAC. Methods: Elesclomol, disulfiram, and ammonium pyrrolidinedithiocarbamate were systematically characterised across panels of oesophageal cell lines and patient-derived organoids. Drug treated oesophageal cell lines were morphologically profiled using a high-content, imaging platform. Compounds were assessed for efficacy across patient-derived organoids. Metabolomics and transcriptomics were assessed for the identification of oesophageal-cancer specific drug mechanisms and patient stratification hypotheses. Results: High-content profiling revealed that all three compounds were highly selective for OAC over tissue-matched controls. Comparison of gene expression and morphological signatures unveiled a unified mechanism of action involving the accumulation of copper selectively in cancer cells, leading to dysregulation of proteostasis and cancer cell death. Basal omic analyses revealed proteasome and metabolic markers of drug sensitivity, forming the basis for biomarker-based clinical trials in OAC. Conclusions: Integrated analysis of high-content imaging, transcriptomic and metabolomic data has revealed a new therapeutic mechanism for the treatment of OAC and represents an alternative target-agnostic drug discovery strategy.


2015 ◽  
Vol 122 (5) ◽  
pp. 1142-1151 ◽  
Author(s):  
Dai Li ◽  
Zhen-Zhen Huang ◽  
Yun-Zhi Ling ◽  
Jia-You Wei ◽  
Yu Cui ◽  
...  

Abstract Background: Up-regulation of CX3CL1 has been revealed to be involved in the neuropathic pain induced by nerve injury. However, whether CX3CL1 participates in the paclitaxel-induced painful peripheral neuropathy remains unknown. The aim of the current study was to elucidate the involvement of transcriptional factors nuclear factor-κB (NF-κB) and its causal interaction with CX3CL1 signaling in the paclitaxel-induced painful peripheral neuropathy. Methods: Painful peripheral neuropathy induced by paclitaxel treatment was established in adult male Sprague-Dawley rats. The von Frey test were performed to evaluate neuropathic pain behavior, and real-time quantitative reverse transcription polymerase chain reaction, chromatin immunoprecipitation, Western blot, immunohistochemistry, and small interfering RNA were performed to understand the molecular mechanisms. Results: The application of paclitaxel induced an up-regulation of CX3CL1 expression in the spinal neurons, which is reduced significantly by NF-κB inhibitor ammonium pyrrolidinedithiocarbamate or p65 small interfering RNA. Blockade of either CX3CL1 (n = 12 each) or NF-κB (n = 12 each) signaling pathway attenuated mechanical allodynia induced by paclitaxel. Chromatin immunoprecipitation further found that paclitaxel induced an increased recruitment of nuclear factor-κB (NF-κB)p65 to the Cx3cl1 promoter region. Furthermore, an increased acetylation level of H4, but not H3, in Cx3cl1 promoter region in spinal neurons was detected after paclitaxel treatment, which was reversed by inhibition of NF-κB with ammonium pyrrolidinedithiocarbamate or p65 small interfering RNA. Conclusions: These findings suggest that up-regulation of CX3CL1 via NF-κB–dependent H4 acetylation might be critical for paclitaxel-induced mechanical allodynia.


2007 ◽  
Vol 72 (6) ◽  
pp. 585-590 ◽  
Author(s):  
Morteza Talebi ◽  
Homeyra Safigholi

Arapid, simple, and sensitive procedure based on modified solid phase extraction was developed for the pre-concentration and determination of trace amount of lead in water resources. Lead was reacted with ammonium pyrrolidinedithiocarbamate (APDC) to make a complex. The complex was then collected in a column packed with surfactant-coated alumina. The parameters affecting the collection efficiency and desorption rate of the lead complexes from the column were investigated and optimized. The collection efficiency of the lead complex on the adsorbent was excellent under the optimized conditions. The results obtained from the recovery test showed the capability and reliability of the method for the analysis of trace amounts of lead. The proposed pre-concentration procedure made it possible to apply conventional flame atomic absorption spectrometry (FAAS) for the sensitive determination of trace amounts of lead in water resources. .


Sign in / Sign up

Export Citation Format

Share Document