BIOGAS PRODUCTION BY ANAEROBIC TREATMENT OF WASTE MIXTURE CONSISTING OF CATTLE MANURE AND VEGETABLE REMAINS

2012 ◽  
Vol 11 (4) ◽  
pp. 849-856 ◽  
Author(s):  
Alvydas Zagorskis ◽  
Pranas Baltrenas ◽  
Antonas Misevicius ◽  
Edita Baltrenaite
2003 ◽  
Vol 48 (4) ◽  
pp. 53-60 ◽  
Author(s):  
E. Trably ◽  
D. Patureau ◽  
J.P. Delgenes

Anaerobically stabilized sewage sludge has potential to partially substitute synthetic fertilizers. The main risk with the recycling of urban sludge on agricultural soils is the accumulation of unwanted products, such as trace metals and organic micropollutants. In this context, the polycyclic aromatic hydrocarbons (PAHs) are particularly monitored because of their toxic properties at low concentrations and their high resistance to biological degradation. The aim of the present study was to optimize PAHs removal during anaerobic digestion of contaminated sewage sludge. Thirteen PAHs were monitored in laboratory-scale anaerobic bioreactors under mesophilic (35°C) and thermophilic (55°C) methanogenic conditions. Abiotic losses were statistically significant for the lightest PAHs, such as fluorene, phenanthrene and anthracene. It was shown that PAH removal was due to a specific biological activity. Biological PAHs removal was significantly enhanced by an increase of the temperature from 35°C to 55°C, especially for the heaviest PAHs. Bioaugmentation experiment was also performed by addition of a PAH-adapted bacterial consortium to a non-acclimated reactor. Significant enhancement of PAHs removal was observed. It was finally shown that PAH removal efficiencies and methanogenic performances were closely linked. The rate of biogas production may be used as an indicator of bacterial activity on PAH removal.


2017 ◽  
Vol 37 (6) ◽  
pp. 1081-1090 ◽  
Author(s):  
Camila F. Matos ◽  
Juliana L. Paes ◽  
Érika F. M. Pinheiro ◽  
David V. B. De Campos

Author(s):  
Maria V. Morar

In our country, the developments of the measures for the prevention of the environmental pollution are aligning to the UE Directives. The costs for the treatment of the water wastes are continuously increasing, following to the also increasing of the investments costs. Therefore it is necessary to accord attention for the alternatives of cleaning, treating, respective recycling of the agro-industrial wastes and their reintroduction in the natural circuit. At the processing of the food results wastes with high organic charge. The effluents form the processing of dairy products, sugar, starch, beer yeasts as well as breweries or distilleries are getting fast into acids fermentation, finally resulting organic acids. Such process water wastes can be released in the canalization by dilution or by a suitable treating. As an example, for the distillery wastes (distillery slops) with a high dry matter contents (4-20%), the waste water treatment plant shall be designed properly (with mechanical separation step and biological treatment) to ensure the capacity of purifying according to the high flow and increased concentration, due to the high CBOD5 concentration. The treatment of such water wastes can be realized with aerobic processes, which suppose a high energetic consumption. While in the aerobic purifying processes 50 % of the CBOD5 is involved in the forming of biomass and slurry in excess, in the anaerobic treatment processes (anaerobic or methane digestion) a high part of the substrate (until 70 %) is metabolized through the metabolic transformation of bacterial flora, with production of biogas. Therefore, the concentrated water wastes, with potential for the energy production could offer a possibility of energy replacement in the own processing units. The paper presents a review of the anaerobic digestion for different wastes from the agro-industrial processing and their potential for the biogas production. There are presented possibilities of mixture, respectively of co-digestion of different wastes the agro-industrial processing with other wastes from the agriculture (from cereals processing, biomass, manure etc). Simultaneously biogas plants from the praxis with functioning characteristics are presented.


2014 ◽  
Vol 7 (4) ◽  
pp. 44-47 ◽  
Author(s):  
Rabiu, A ◽  
◽  
Yaakub, H ◽  
Liang, J. B ◽  
Samsudin, A. A

Author(s):  
Guilherme Henrique da Silva ◽  
Nathan Oliveira Barros ◽  
Larice Aparecida Rezende Santana ◽  
Jailton da Costa Carneiro ◽  
Marcelo Henrique Otenio

Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Zehua Huang ◽  
Renren Wu ◽  
XiaoHui Yi ◽  
Hongbin Liu ◽  
Jiannan Cai ◽  
...  

The anaerobic treatment process is a complicated multivariable system that is nonlinear and time varying. Moreover, biogas production rates are an important indicator for reflecting operational performance of the anaerobic treatment system. In this work, a novel model fuzzy wavelet neural network based on the genetic algorithm (GA-FWNN) that combines the advantages of the genetic algorithm, fuzzy logic, neural network, and wavelet transform was established for prediction of effluent quality and biogas production rates in a full-scale anaerobic wastewater treatment process. Moreover, the dataset was preprocessed via a self-adapted fuzzy c-means clustering before training the network and a hybrid algorithm for acquiring the optimal parameters of the multiscale GA-FWNN for improving the network precision. The analysis results indicate that the FWNN with the optimal algorithm had a high speed of convergence and good quality of prediction, and the FWNN model was more advantageous than the traditional intelligent coupling models (NN, WNN, and FNN) in prediction accuracy and robustness. The determination coefficients R2 of the FWNN models for predicting both the effluent quality and biogas production rates were over 0.95. The proposed model can be used for analyzing both biogas (methane) production rates and effluent quality over the operational time period, which plays an important role in saving energy and eliminating pollutant discharge in the wastewater treatment system.


Sign in / Sign up

Export Citation Format

Share Document