scholarly journals The Effect of Distinct Operational Conditions on Organic Material Removal and Biogas Production in the Anaerobic Treatment of Cattle Manure

Author(s):  
Neslihan Manav Demir ◽  
Tamer Coskun ◽  
Eyup Debik
2012 ◽  
Vol 11 (4) ◽  
pp. 849-856 ◽  
Author(s):  
Alvydas Zagorskis ◽  
Pranas Baltrenas ◽  
Antonas Misevicius ◽  
Edita Baltrenaite

2003 ◽  
Vol 48 (4) ◽  
pp. 53-60 ◽  
Author(s):  
E. Trably ◽  
D. Patureau ◽  
J.P. Delgenes

Anaerobically stabilized sewage sludge has potential to partially substitute synthetic fertilizers. The main risk with the recycling of urban sludge on agricultural soils is the accumulation of unwanted products, such as trace metals and organic micropollutants. In this context, the polycyclic aromatic hydrocarbons (PAHs) are particularly monitored because of their toxic properties at low concentrations and their high resistance to biological degradation. The aim of the present study was to optimize PAHs removal during anaerobic digestion of contaminated sewage sludge. Thirteen PAHs were monitored in laboratory-scale anaerobic bioreactors under mesophilic (35°C) and thermophilic (55°C) methanogenic conditions. Abiotic losses were statistically significant for the lightest PAHs, such as fluorene, phenanthrene and anthracene. It was shown that PAH removal was due to a specific biological activity. Biological PAHs removal was significantly enhanced by an increase of the temperature from 35°C to 55°C, especially for the heaviest PAHs. Bioaugmentation experiment was also performed by addition of a PAH-adapted bacterial consortium to a non-acclimated reactor. Significant enhancement of PAHs removal was observed. It was finally shown that PAH removal efficiencies and methanogenic performances were closely linked. The rate of biogas production may be used as an indicator of bacterial activity on PAH removal.


2013 ◽  
Vol 69 (2) ◽  
pp. 269-277 ◽  
Author(s):  
C. Da Ros ◽  
C. Cavinato ◽  
F. Cecchi ◽  
D. Bolzonella

In this study the anaerobic co-digestion of wine lees together with waste activated sludge in mesophilic and thermophilic conditions was tested at pilot scale. Three organic loading rates (OLRs 2.8, 3.3 and 4.5 kgCOD/m3d) and hydraulic retention times (HRTs 21, 19 and 16 days) were applied to the reactors, in order to evaluate the best operational conditions for the maximization of the biogas yields. The addition of lee to sludge determined a higher biogas production: the best yield obtained was 0.40 Nm3biogas/kgCODfed. Because of the high presence of soluble chemical oxygen demand (COD) and polyphenols in wine lees, the best results in terms of yields and process stability were obtained when applying the lowest of the three organic loading rates tested together with mesophilic conditions.


2017 ◽  
Vol 37 (6) ◽  
pp. 1081-1090 ◽  
Author(s):  
Camila F. Matos ◽  
Juliana L. Paes ◽  
Érika F. M. Pinheiro ◽  
David V. B. De Campos

Author(s):  
Maria V. Morar

In our country, the developments of the measures for the prevention of the environmental pollution are aligning to the UE Directives. The costs for the treatment of the water wastes are continuously increasing, following to the also increasing of the investments costs. Therefore it is necessary to accord attention for the alternatives of cleaning, treating, respective recycling of the agro-industrial wastes and their reintroduction in the natural circuit. At the processing of the food results wastes with high organic charge. The effluents form the processing of dairy products, sugar, starch, beer yeasts as well as breweries or distilleries are getting fast into acids fermentation, finally resulting organic acids. Such process water wastes can be released in the canalization by dilution or by a suitable treating. As an example, for the distillery wastes (distillery slops) with a high dry matter contents (4-20%), the waste water treatment plant shall be designed properly (with mechanical separation step and biological treatment) to ensure the capacity of purifying according to the high flow and increased concentration, due to the high CBOD5 concentration. The treatment of such water wastes can be realized with aerobic processes, which suppose a high energetic consumption. While in the aerobic purifying processes 50 % of the CBOD5 is involved in the forming of biomass and slurry in excess, in the anaerobic treatment processes (anaerobic or methane digestion) a high part of the substrate (until 70 %) is metabolized through the metabolic transformation of bacterial flora, with production of biogas. Therefore, the concentrated water wastes, with potential for the energy production could offer a possibility of energy replacement in the own processing units. The paper presents a review of the anaerobic digestion for different wastes from the agro-industrial processing and their potential for the biogas production. There are presented possibilities of mixture, respectively of co-digestion of different wastes the agro-industrial processing with other wastes from the agriculture (from cereals processing, biomass, manure etc). Simultaneously biogas plants from the praxis with functioning characteristics are presented.


2014 ◽  
Vol 7 (4) ◽  
pp. 44-47 ◽  
Author(s):  
Rabiu, A ◽  
◽  
Yaakub, H ◽  
Liang, J. B ◽  
Samsudin, A. A

Author(s):  
Guilherme Henrique da Silva ◽  
Nathan Oliveira Barros ◽  
Larice Aparecida Rezende Santana ◽  
Jailton da Costa Carneiro ◽  
Marcelo Henrique Otenio

Sign in / Sign up

Export Citation Format

Share Document