A SIMULATION STUDY ON THE DIESEL ENGINE COMBUSTION PROCESS BASED ON THE FIELD-EFFECT ANALYSIS METHOD OF COMBINED COMBUSTION

2015 ◽  
Vol 14 (1) ◽  
pp. 213-221 ◽  
Author(s):  
Lu-ming Zhao ◽  
Xiang-rong Li ◽  
Zhi-jie Li ◽  
Fu-shui Liu
2013 ◽  
Vol 744 ◽  
pp. 35-39
Author(s):  
Lei Ming Shi ◽  
Guang Hui Jia ◽  
Zhi Fei Zhang ◽  
Zhong Ming Xu

In order to obtain the foundation to the research on the Diesel Engine YN4100QB combustion process, exhaust, the optimal design of combustion chamber and the useful information for the design of exhaust muffler, the geometric model and mesh model of a type internal combustion engine are constructed by using FIRE software to analyze the working process of internal combustion engine. Exhaust noise is the main component of automobile noise in the study of controlling vehicle noise. It is primary to design a type of muffler which is good for agricultural automobile engine matching and noise reduction effect. The present car mufflers are all development means. So it is bound to cause the long cycle of product development and waste of resources. Even sometimes not only can it not reach the purpose of reducing the noise but also it leads to reduce the engine dynamic. The strength of the exhaust noise is closely related to engine combustion temperature and pressure. The calculation and initial parameters are applied to the software based on the combustion model and theory. According to the specific operation process of internal combustion engine. Five kinds of common operation condition was compiled. It is obtained for the detailed distribution parameters of combusted gas temperature pressure . It is also got for flow velocity of the fields in cylinder and given for the relation of the parameters and crankshaft angle for the further research. At the same time NOx emissions situation are got. The numerical results show that not only does it provide the 3D distribution data in different crank shaft angle inside the cylinder in the simulation of combustion process, but also it provides a basis for the engine combustion ,emission research, the optimization design of the combustion chamber and the useful information for the designs of muffler.


2006 ◽  
Vol 129 (3) ◽  
pp. 877-884 ◽  
Author(s):  
Joan Boulanger ◽  
Fengshan Liu ◽  
W. Stuart Neill ◽  
Gregory J. Smallwood

Soot formation phenomenon is far from being fully understood today and models available for simulation of soot in practical combustion devices remain of relatively limited success, despite significant progresses made over the last decade. The extremely high demand of computing time of detailed soot models make them unrealistic for simulation of multidimensional, transient, and turbulent diesel engine combustion. Hence, most of the investigations conducted in real configuration such as multidimensional diesel engines simulation utilize coarse modeling, the advantages of which are an easy implementation and low computational cost. In this study, a phenomenological three-equation soot model was developed for modeling soot formation in diesel engine combustion based on considerations of acceptable computational demand and a qualitative description of the main features of the physics of soot formation. The model was developed based on that of Tesner et al. and was implemented into the commercial STAR-CD™ CFD package. Application of this model was demonstrated in the modeling of soot formation in a single-cylinder research version of Caterpillar 3400 series diesel engine with exhaust gas recirculation (EGR). Numerical results show that the new soot formulation overcomes most of the drawbacks in the existing soot models dedicated to this kind of engineering task and demonstrates a robust and consistent behavior with experimental observation. Compared to the existing soot models for engine combustion modeling, some distinct features of the new soot model include: no soot is formed at low temperature, minimal model parameter adjustment for application to different fuels, and there is no need to prescribe the soot particle size. At the end of expansion, soot is predicted to exist in two separate regions in the cylinder: in the near wall region and in the center part of the cylinder. The existence of soot in the near wall region is a result of reduced soot oxidation rate through heat loss. They are the source of the biggest primary particles released at the end of the combustion process. The center part of the cylinder is populated by smaller soot particles, which are created since the early stages of the combustion process but also subject to intense oxidation. The qualitative effect of EGR is to increase the size of soot particles as well as their number density. This is linked to the lower in-cylinder temperature and a reduced amount of air.


2013 ◽  
Author(s):  
Zhijia Yang ◽  
Thomas Steffen ◽  
Richard Stobart

2018 ◽  
Vol 8 (12) ◽  
pp. 2489 ◽  
Author(s):  
Yu Ding ◽  
Congbiao Sui ◽  
Jincheng Li

The marine diesel engine combustion process is discontinuous and unsteady, resulting in complicated simulations and applications. When the diesel engine is used in the system integration simulation and investigation, a suitable combustion model has to be developed due to compatibility to the other components in the system. The Seiliger process model uses finite combustion stages to perform the main engine combustion characteristics and using the cycle time scale instead of the crank angle shortens the simulation time. Obtaining the defined Seiliger parameters used to calculate the engine performance such as peak pressure, temperature and work is significant and fitting process has to be carried out to get the parameters based on experimental investigation. During the combustion fitting, an appropriate mathematics approach is selected for root finding of non-linear multi-variable functions since there is a large amount of used experimental data. A direct injection marine engine test bed is applied for the experimental investigation based on the combustion fitting approach. The results of each cylinder and four-cylinder averaged pressure signals are fitted with the Seiliger process that is shown separately to obtain the Seiliger parameters, and are varied together with these parameters and with engine operating conditions to provide the basis for engine combustion modeling.


2019 ◽  
Author(s):  
Frengki Mohamad Felayati ◽  
Semin ◽  
Muhammad Badrus Zaman ◽  
Ayudhia Pangestu Gusti

Sign in / Sign up

Export Citation Format

Share Document