GROWTH OF Phormidium bigranulatum-DOMINATED MAT IN RELATION TO NATURE OF THE SUBSTRATUM, TIME, pH AND NUTRIENT AVAILABILITY

2018 ◽  
Vol 17 (2) ◽  
pp. 307-316 ◽  
Author(s):  
Dhananjay Kumar ◽  
Lalit K. Pandey ◽  
Jai P. Gaur
1987 ◽  
Vol 19 (8) ◽  
pp. 99-105 ◽  
Author(s):  
G. Tesan ◽  
D. Barbosa

The work presented consists of a test procedure applied at a pilot scale using soil as a biological degradation agent. The experiments described were carried out with oily residues considered as wastes difficult to degrade by other means. The tests were applied to filter cake with activated clay containing 40% oil and oily residues from re-refining of lubricants to give white oils and vaseline. The effect of the amount of moisture is evaluated using a mechanical stirrer to improve the interaction between the wastes and microorganisms. The following are also evaluated: nutrient availability; incorporation of micro-organisms into the soil; introduction of chemical fertilizers; and, injections of sludge from effluent treatment plants.


2019 ◽  
Vol 97 (7) ◽  
pp. 3056-3070 ◽  
Author(s):  
Emily A Petzel ◽  
Evan C Titgemeyer ◽  
Alexander J Smart ◽  
Kristin E Hales ◽  
Andrew P Foote ◽  
...  

AbstractTwo experiments were conducted to measure rates of ruminal disappearance, and energy and nutrient availability and N balance among cows fed corn husks, leaves, or stalks. Ruminal disappearance was estimated after incubation of polyester bags containing husks, leaves or stalks in 2 separate ruminally cannulated cows in a completely randomized design. Organic matter (OM) that initially disappeared was greatest for stalks and least for husks and leaves (P < 0.01), but amounts of NDF that initially disappeared was greatest for husks, intermediate for stalks, and least for leaves (P < 0.01). Amounts of DM and OM that slowly disappeared were greatest in husks, intermediate in leaves, and least in stalks (P < 0.01). However, amounts of NDF that slowly disappeared were greatest in leaves, intermediate in husks, and least in stalks (P < 0.01). Rate of DM and OM disappearance was greater for leaves, intermediate for husks and least for stalks, but rate of NDF disappearance was greatest for stalks, intermediate for leaves, and least for husks (P < 0.01). Energy and nutrient availability in husks, leaves, or stalks were measured by feeding ruminally cannulated cows husk-, leaf-, or stalk-based diets in a replicated Latin square. Digestible energy lost as methane was less (P = 0.02) when cows were fed leaves in comparison to husks or stalks, and metabolizable energy (Mcal/kg DM) was greater (P = 0.03) when cows were fed husks and leaves compared with stalks. Heat production (Mcal/d) was not different (P = 0.74) between husks, leaves, or stalks; however, amounts of heat produced as a proportion of digestible energy intake were less (P = 0.05) among cows fed leaves in comparison to stalks or husks. Subsequently, there was a tendency (P = 0.06) for net energy available for maintenance from leaves (1.42 Mcal/kg DM) to be greater than stalks (0.91 Mcal/kg DM), and husks (1.30 Mcal/kg DM) were intermediate. Nitrogen balance was greater when cows were fed leaves, intermediate for husks, and least for stalks (P = 0.01). Total tract digestion of NDF was greater (P < 0.01) for husks and leaves compared with stalks. Husks had greater (P = 0.04) OM digestibility in comparison to stalks, and leaves were intermediate. Apparently, greater production of methane from husks in comparison to leaves limited amounts of energy available for maintenance from husks even though total-tract nutrient digestion was greatest when cows were fed husks or leaves.


2011 ◽  
Vol 34 (14) ◽  
pp. 2095-2113 ◽  
Author(s):  
Rongzhong Ye ◽  
Alan L. Wright ◽  
J. Mabry McCray

2021 ◽  
Vol 88 (1) ◽  
pp. 80-88
Author(s):  
Remo Stürmlin ◽  
Josef J. Gross ◽  
Olga Wellnitz ◽  
Lea A. Wagner ◽  
Camille Monney ◽  
...  

AbstractThe aim of the present study was to investigate the effects of milk composition changes on the in vitro growth of bovine mastitis pathogens. Nutritional requirements of three major bovine mastitis pathogens Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Streptococcus uberis (S. uberis) were investigated in vitro. We used ultra-high temperature (UHT) treated milk with different contents of fat, protein, and carbohydrates to test the influence of the availability of various milk constituents on pathogen growth characteristics. Additionally, the bacterial growth was investigated under experimentally modified nutrient availability by dilution and subsequent supplementation with individual nutrients (carbohydrates, different nitrogen sources, minerals, and different types of B vitamins) either to milk or to a conventional medium (thioglycolate broth, TB). Varying contents of fat, protein or lactose did not affect bacterial growth with the exception of growth of S. uberis being promoted in protein-enriched milk. The addition of nutrients to diluted whole milk and TB partly revealed different effects, indicating that there are media-specific growth limiting factors after dilution. Supplementation of minerals to diluted milk did not affect growth rates of all studied bacteria. Bacterial growth in diluted whole milk was decreased by the addition of high concentrations of amino acids in S. aureus, and by urea and additional B vitamins in E. coli and S. aureus. The growth rate of S. uberis was increased by the addition of B vitamins to diluted whole milk. The present results demonstrate that growth-limiting nutrients differ among pathogen types. Because reduced bacterial growth was only shown in diluted milk or TB, it is unlikely that alterations in nutrient availability occurring as a consequence of physiological changes of milk composition in the cow's udder would directly affect the susceptibility or course of bovine mastitis.


Sign in / Sign up

Export Citation Format

Share Document