scholarly journals Study on Solid Particle Erosion of Pump Materials by Fly Ash Slurry using Taguchi’s Orthogonal Array

2021 ◽  
Vol 38 (3−4) ◽  
Author(s):  
Jashanpreet Singh ◽  
Satish Kumar ◽  
S.K. Mohapatra

Various grades of stainless steel are used to fabricate the pump impeller, casings, and seals used in heavy-duty erosion and corrosion conditions. In the present study, stainless steel (SS316L, SS304, SDSS2507) and grey cast iron used in the fabrication of heavy-duty pump impellers were taken for the analysis of solid particle erosion. Experiments were conducted on the lab-scale slurry pot tester. Fly ash slurry was prepared of different concentrations (wt%). Taguchi’s orthogonal array is used to design the experiments of erosion wear for the variation of rotational speed, solid concentration, time, and particle size. Results showed that SS316L showed superior microhardness and wear behavior against the fly ash slurry followed by SS304, SDSS2507 and Grey cast iron.  

Author(s):  
Risa Okita ◽  
Yongli Zhang ◽  
Brenton S. McLaury ◽  
Siamack A. Shirazi ◽  
Edmund F. Rybicki

Although solid particle erosion has been examined extensively in the literature for dry gas and vacuum conditions, several parameters affecting solid particle erosion in liquids are not fully understood and need additional investigation. In this investigation, erosion ratios of two materials have been measured in gas and also in liquids with various liquid viscosities and abrasive particle sizes and shapes. Solid particle erosion ratios for aluminum 6061-T6 and 316 stainless steel have been measured for a direct impingement flow condition using a submerged jet geometry, with liquid viscosities of 1, 10, 25, and 50 cP. Sharp and rounded sand particles with average sizes of 20, 150, and 300 μm, as well as spherical glass beads with average sizes of 50, 150 and 350 μm, were used as abrasives. To make comparisons of erosion in gas and liquids, erosion ratios of the same materials in air were measured for sands and glass beads with the particle sizes of 150 and 300 μm. Based on these erosion measurements in gas and liquids, several important observations were made: (1) Particle size did not affect the erosion magnitude for gas while it did for viscous liquids. (2) Although aluminum and stainless steel have significant differences in hardness and material characteristics, the mass losses of these materials were nearly the same for the same mass of impacting particles in both liquid and gas. (3) The most important observation from these erosion tests is that the shape of the particles did not significantly affect the trend of erosion results as liquid viscosity varied. This has an important implication on particle trajectory modeling where it is generally assumed that particles are spherical in shape. Additionally, the particle velocities measured with the Laser Doppler Velocimetry (LDV) near the wall were incorporated into the erosion equations to predict the erosion ratio in liquid for each test condition. The calculated erosion ratios are compared to the measured erosion ratios for the liquid case. The calculated results agree with the trend of the experimental data.


2020 ◽  
Vol 277 ◽  
pp. 128381
Author(s):  
A. Ruiz-Rios ◽  
C. López-García ◽  
I. Campos-Silva

In the present study, solid particle erosion behaviour on copper – fly ash composite is studied. Composite with addition of 2.5 (wt.%) fly ash as reinforcement is prepared through powder metallurgy(P/M) technique. Solid particle erosion studies were carried out by varying the input parameters such as erodent velocity and erosion time. The results revealed that addition of fly ash reduced the resistance to erosion.


Author(s):  
Anil Babu Seelam ◽  
Nabil Ahmed Zakir Hussain ◽  
Sachidananda Hassan Krishanmurthy

Brakes are the most important component of any automobile. Brakes provide the ability to reduce or bring automobile to a complete stop. The process of braking is usually achieved by applying pressure to the brake discs. The main objective of this research paper is to propose an appropriate design and to perform analysis of a suitable brake rotor to enhance the performance of the high-speed car. The design of the brake disc is modelled using Solid works and the analysis is carried out using Ansys software. The analysis has been conducted by considering stainless steel and grey cast iron using same brake rotor design so that optimal choice of brake disc can be considered. The analysis considered involves static structural analysis and steady state thermal analysis considering specific parameters on brake rotor to increase the life of brake rotor. From the analysis it is found that the performance and life of disc brake depends upon heat dissipation. From the analysis results it can be concluded that grey cast iron has performed better as compared to stainless steel as this material has anti-fade properties which improves the life of the brake rotor.


2020 ◽  
Vol 20 (7) ◽  
pp. 4513-4516
Author(s):  
Kwang-Hu Jung ◽  
Seong-Jong Kim

This study evaluated the solid particle erosion characteristics of 2.25Cr–1Mo steel with aging time. Aging was performed at 750 °C until 100 h. Specimens aged at each time were characterized by microstructure analysis and Micro-Vickers hardness. An erosion experiment was conducted using 100~200 μm of stainless steel shot at a flow velocity of 20 m/s for 4 h. A consequently, a microstructure degradation phenomenon in which Cr-rich carbide was coarsened occurred, and the surface hardness decreased by 45%. With a decrease in the hardness, the solid particle erosion damage increased and the erosion damage type changed.


Author(s):  
Ankit Singh ◽  
Sudhanshu Kumar Pandey ◽  
Ram Mishra ◽  
Dr. Uday Krishna Ravella ◽  

2015 ◽  
Vol 55 (5) ◽  
pp. 1123-1130 ◽  
Author(s):  
Ashish Selokar ◽  
Ujjwal Prakash ◽  
Desh Bandhu Goel ◽  
Balabhadrapatruni Venkata Manoj Kumar

Sign in / Sign up

Export Citation Format

Share Document