scholarly journals SOCIOECONOMIC ASSESSMENT OF NO-TILL IN WHEAT CROPPING SYSTEM: A CASE STUDY IN ALGERIA

New Medit ◽  
2019 ◽  
Vol 18 (1) ◽  
pp. 52-64 ◽  
Author(s):  
Amar Rouabhi ◽  
Abdelmalek Laouar ◽  
Abdelhamid Mekhlouk ◽  
Boubaker Dhehibi

This paper aimed at the socioeconomic appraisal of two cropping systems namely no-till and tilled wheat in Sétif region (Algeria). The study based on a sample of 28 adherent farms in an international project of Conservation Agriculture adoption for smallholders in North Africa. Economic diagnosis showed that no-till system performed best with a gross margin difference of $ 84/ha in comparison with conventional tilled wheat. Moreover, no-till recorded less work time and fuel consumption, with 241minutes/ha and 42 liters/ha against 624 minutes/ha and 99 liters/ha for conventional tillage. Though, no-till still faced some local social and technical constraints that are relatively easy to overcome. If Algeria put forward its best efforts through increasing no-till in the suitable zones, many objectives could be achieved in the context of preserving natural resources and building up farming sustainability. It could be also a key solution for “Intended Nationally Determined Contribution” (INDCs) schemes to meet Algerian commitments regarding “Paris Agreement” on climate change.

2015 ◽  
Vol 31 (6) ◽  
pp. 568-573 ◽  
Author(s):  
Randy L. Anderson

AbstractNo-till practices have improved crop yields in the semiarid Great Plains. However, a recent assessment of research studies across the globe indicated that crop yields are often reduced by no-till. To understand this contrast, we examined corn yields across time in a no-till cropping system of one producer in central South Dakota to identify factors associated with increased yield. The producer started no-till in 1990; by 2013, corn yield increased 116%. In comparison, corn increased only 32% during this interval with a conventional, tillage-based system in a neighboring county. With no-till, corn yields increased in increments due to changes in management. For example, corn yield increased 52% when crop diversity in the rotation was expanded from 2 to 5 crops. A further 18% gain in yield occurred when dry pea was grown before corn in sequence. Nitrogen (N) requirement for corn is 25% lower in no-till compared with a tillage-based rotation. Furthermore, phosphorus (P) fertilizer input also has been reduced 30% after 20 yr of no-till, even with higher yields. Our case study shows that integrating no-till with crop diversity and soil microbial changes improves corn yield considerably. This integration also reduces need for inputs such as water, N and P.


2019 ◽  
Vol 17 (1) ◽  
pp. 49-63
Author(s):  
K Pariyar ◽  
A Chaudhary ◽  
P Sapkota ◽  
S Sharma ◽  
CB Rana ◽  
...  

The effects of two tillage methods (zero tillage and conventional tillage), two residue managements (residue kept and residue removed) and two levels of cropping system (maize + soybean and sole maize) were studied over 3 years (2015-2017) at Dailekh district of Nepal. Arun-2 and Puja were the varieties of maize and soybean used respectively, followed by winter wheat. The results revealed that the maize + soybean system had significantly higher plant population and ear population (34.83 thousands ha-1 and 34.35 thousands ha-1, respectively), grains per row (37.1), ear length (16.6 cm) and 20.5% higher grain yield as compared to sole maize. The highest maize equivalent yield (7.92 t ha-1) was recorded in maize + soybean as compared to the lower grain yield equivalent (7.06 t ha-1) in sole maize. Zero tillage accounted relatively higher benefits (high net income and B:C ratio) as compared to conventional tillage. The residue kept plot resulted significantly higher B:C ratio (2.41) than the residue removed (2.11) and the maize + soybean recorded 82.5% greater B:C ratio compared to sole maize. Net annual income was significantly higher in zero tillage, residue kept and maize + soybean system (NRs. 223072.00, 222958.00 and 269016.00 ha-1 respectively). Such combinations are recommended for Dailekh district of Nepal to have profitable crop productivity. SAARC J. Agri., 17(1): 49-63 (2019)


2015 ◽  
Vol 66 (6) ◽  
pp. 553 ◽  
Author(s):  
A. M. Whitbread ◽  
C. W. Davoren ◽  
V. V. S. R. Gupta ◽  
R. Llewellyn ◽  
the late D. Roget

Continuous-cropping systems based on no-till and crop residue retention have been widely adopted across the low-rainfall cereal belt in southern Australia in the last decade to manage climate risk and wind erosion. This paper reports on two long-term field experiments that were established in the late 1990s on texturally different soil types at a time of uncertainty about the profitability of continuous-cropping rotations in low-rainfall environments. Continuous-cereal systems significantly outyielded the traditional pasture–wheat systems in five of the 11 seasons at Waikerie (light-textured soil), resulting in a cumulative gross margin of AU$1600 ha–1 after the initial eight seasons, almost double that of the other treatments. All rotation systems at Kerribee (loam-textured soil) performed poorly, with only the 2003 season producing yields close to 3 t ha–1 and no profit achieved in the years 2004–08. For low-rainfall environments, the success of a higher input cropping system largely depends on the ability to offset the losses in poor seasons by capturing greater benefits from good seasons; therefore, strategies to manage climatic risk are paramount. Fallow efficiency, or the efficiency with which rainfall was stored during the period between crops, averaged 17% at Kerribee and 30% at Waikerie, also indicating that soil texture strongly influences soil evaporation. A ‘responsive’ strategy of continuous cereal with the occasional, high-value ‘break crop’ when seasonal conditions are optimal is considered superior to fixed or pasture–fallow rotations for controlling grass, disease or nutritional issues.


2011 ◽  
Vol 47 (1) ◽  
pp. 111-136 ◽  
Author(s):  
EIHAB M. FATHELRAHMAN ◽  
JAMES C. ASCOUGH ◽  
DANA L. HOAG ◽  
ROBERT W. MALONE ◽  
PHILIP HEILMAN ◽  
...  

SUMMARYThere are many reasons why agricultural researchers carefully evaluate approaches to experimental data analysis. Agricultural experiments are typically highly complex, with many types of variables often collected at a wide range of temporal and spatial scales. Furthermore, research in the developing world is often conducted on-farm where simple and conventional experimental designs are often unsuitable. Recently, a variant of stochastic dominance called stochastic efficiency with respect to a function (SERF) has been developed and used to analyse long-term experimental data. Unlike traditional stochastic dominance approaches, SERF uses the concept of certainty equivalents (CEs) to rank a set of risk-efficient alternatives instead of finding a subset of dominated alternatives. This study evaluates the efficacy of the SERF methodology for analysing conventional and conservation tillage systems using 14 years (1990–2003) of economic budget data collected from 36 experimental plots at the Iowa State University Northeast Research Station near Nashua, IA, USA. Specifically, the SERF approach is used to examine which of two different tillage systems (chisel plough and no-till) on continuous corn (Zea mays) and corn/soyabean (Glycine max) rotation cropping systems are the most risk-efficient in terms of maximizing economic profitability (gross margin and net return) by crop across a range of risk aversion preferences. In addition to the SERF analysis, we also conduct an economic analysis of the tillage system alternatives using mean-standard deviation and coefficient of variation for ranking purposes. Decision criteria analysis of the economic measures alone provided somewhat contradictive and non-conclusive rankings, e.g. examination of the decision criteria results for gross margin and net return showed that different tillage system alternatives were the highest ranked depending on the criterion and the cropping system (e.g. individual or rotation). SERF analysis results for the tillage systems were also dependent on the cropping system (individual, rotation or whole-farm combined) and economic outcome of interest (gross margin or net return) but only marginally on the level of risk aversion. For the individual cropping systems (continuous corn, rotation corn and rotation soyabean), the no-till tillage and rotation soyabean system was the most preferred and the chisel plough tillage and continuous corn system the least preferred across the entire range of risk aversion for both gross margin and net return. The no-till tillage system was preferred to the chisel plough tillage system when ranking within the continuous corn and the corn-soyabean rotation cropping systems for both gross margin and net return. Finally, when analysing the tillage system alternatives on a whole-farm basis (i.e. combined continuous corn and corn-soybean rotation), the no-till tillage system was clearly preferred to the chisel plough tillage system for both gross margin and net return. This study indicates that the SERF method appears to be a useful and easily understood tool to assist farm managers, experimental researchers and, potentially, policy makers and advisers on problems involving agricultural risk.


Author(s):  
Jussi Knaapi

Conservation Agriculture, No-till in this farm level case study, is largely adopted in dry or erosion prone conditions. The need to utilize sustainable production methods has also become a very important topic in conditions where conventional tillage and practices have been used. There are several reasons for this like: Economical pressures, environmental causes and EU regulations. To be able to learn and compare how the same common problems are solved, we have started a two dimension Farm level Case study between England and Finland. We have chosen as similar as possible conditions and farm types. Both farms are located on heavy clay soil, with relatively low annual rainfall. In both areas plow culture is still dominant and no-till considered difficult due to very heavy clay soil with low organic matter.


2015 ◽  
Vol 18 (1-2) ◽  
pp. 44-53 ◽  
Author(s):  
AKM Saiful Islam ◽  
MM Hossain ◽  
MA Saleque

Over the last two decades, Rice (Oryza sativa L.)-Maize (Zea mays L.) cropping systems have become one of the most dominant cropping systems in Bangladesh. This has coincided with the expansion in use of two-wheel tractors, which has facilitated options for minimum tillage. A three-year trial examined the prospects of conservation agriculture practices for Rice-Maize cropping in Bangladesh, with respect to minimum tillage and residue retention. Main plot tillage treatments of conventional full tillage, single pass wet tillage in rice (rotated with zero tillage in maize), bed planting and strip tillage were combined with residue retention treatments of 0, 50 and 100% in sub-plots. Compared to conventional tillage, minimum tillage saved 60-66% of fuel and 70-74% of labour required for land preparation. Although minimum tillage reduced the land preparation cost significantly through saving fuel and labour, weed infestation was higher compared to conventional tillage, which influenced the cost of production. Rice seedlings transplanted under unpuddled strip tillage required more time than in conventional or single pass wet tillage due to poor visibility of strips and the hard surface of untilled soil. Bed planting incurred the lowest production cost. Tillage methods and residue treatment produced no significant grain yield differences. Rice grown with single pass wet tillage and maize grown with strip tillage gave the highest gross margin over time. Despite lack of treatment effects on yields, the results suggest that profitability of Rice-Maize cropping could be increased with minimum tillage, provided there is adequate control of weeds by herbicides.Bangladesh Rice j. 2014, 18(1&2): 44-53


2021 ◽  
Author(s):  
Rakesh S ◽  
Abhas K Sinha ◽  
Mahesh Kumar Gathala ◽  
Menzies ◽  
Sudarshan Dutta ◽  
...  

Abstract Purpose A conservation agriculture-based sustainable intensification (CASI) practices have been proposed as a potential alternative management strategy for achieving the food, water and energy security while sustaining the soil health and climate resilience. In this study, we evaluate the performance of CASI technologies under two cropping systems on carbon (C) dynamics in the soils of recent and old alluvial nature of West Bengal in Eastern Alluvial Ganga Plains. Methods The on-farm field study was undertaken for four years during 2014-15 to 2018-19 with an objective of long-term setup at Coochbehar and Malda districts, West Bengal (subtropical eastern India). The two cropping systems (rice-wheat, RW and rice-maize, RM) and two tillage options (zero tillage, ZT and conventional tillage, CT) were evaluated on multi-location at farmers’ field to see the impact on soil total organic carbon (TOC) and its fractions, stratification, and stocks. Results About 20% higher TOC concentration was observed in the old alluvial soils (Inceptisols of Malda district) as compared to recent alluvial soils (Entisols of Coochbehar district). TOC and its fractions significantly (p<0.05) improved under RM cropping system than that under RW. The ZT system enhanced the TOC and its fractions by 16.8 and 9.8 % over CT at 0–5 and 5–10 cm respectively. All the C fractions showed strong positive correlation (r= >0.85; p < 0.01) with TOC except POC. Conclusions Our research indicated that ZT system increased the C turnover rate in both soil types which was found more prominent in RM system.


2021 ◽  
Vol 22 (1&2) ◽  
pp. 41-44
Author(s):  
Ashish Tiwari ◽  
Anay Rawat ◽  
K.K Agrawal ◽  
Sidarth Nayak

Present field research work of different resource conservation practices on cropping systems was studied in both the season i.e. Kharif and Rabi season during 2010- 2012 at Research Farm, J.N. KrishiVishwa Vidyalaya, Jabalpur (M.P). Research Farm of Kymore plateau and Satpura hill region of Madhya Pradesh which is located at Central India. Results received from the experiment indicated that the Conventional tillage has demonstrated its supremacy over limited tillage with more total production in terms of rice equivalent yield (REY) and economic point of view. The mulch application significantly promotes the production of the tillage system without the mulch, but no mulch has a higher Net Monetary Return (NMR) than the applied mulch. The application of recommended dose of fertilizers, in which 25% Nitrogen supplied through organic sources resulted in greater total production in term of REY of cropping system of the area than the recommended dose of fertilizers alone, but economically greater Net Monetary Returns was observed in 100% recommended dose of fertilizers. The existing cropping system Rice-Berseem purely not only gave higher total production in term of REY, but the most selective choice for the conservation of resource in the Kymore plateau region, and fetched the maximum NMR and B:C  ratio.


1993 ◽  
Vol 28 (3-5) ◽  
pp. 691-700 ◽  
Author(s):  
J. P. Craig ◽  
R. R. Weil

In December, 1987, the states in the Chesapeake Bay region, along with the federal government, signed an agreement which called for a 40% reduction in nitrogen and phosphorus loadings to the Bay by the year 2000. To accomplish this goal, major reductions in nutrient loadings associated with agricultural management practices were deemed necessary. The objective of this study was to determine if reducing fertilizer inputs to the NT system would result in a reduction in nitrogen contamination of groundwater. In this study, groundwater, soil, and percolate samples were collected from two cropping systems. The first system was a conventional no-till (NT) grain production system with a two-year rotation of corn/winter wheat/double crop soybean. The second system, denoted low-input sustainable agriculture (LISA), produced the same crops using a winter legume and relay-cropped soybeans into standing wheat to reduce nitrogen and herbicide inputs. Nitrate-nitrogen concentrations in groundwater were significantly lower under the LISA system. Over 80% of the NT groundwater samples had NO3-N concentrations greater than 10 mgl-1, compared to only 4% for the LISA cropping system. Significantly lower soil mineral N to a depth of 180 cm was also observed. The NT soil had nearly twice as much mineral N present in the 90-180 cm portion than the LISA cropping system.


Sign in / Sign up

Export Citation Format

Share Document