scholarly journals Numerical Study of Bond Stress-Slip Relationship in Large Scale Reactive Powder Concrete Beams

2019 ◽  
Vol 37 (12A) ◽  
pp. 496-505
Author(s):  
Eyad Sayhood ◽  
Sameh Tobeia ◽  
Ammar Ali
2020 ◽  
Vol 62 (9) ◽  
pp. 951-956
Author(s):  
Luo Xuguo ◽  
Tan Zheng Long ◽  
Y. Frank Chen

2018 ◽  
Vol 9 (4) ◽  
pp. 525-553 ◽  
Author(s):  
Wanxiang Chen ◽  
Zixin Zhou ◽  
Huihui Zou ◽  
Zhikun Guo

An approximate approach is developed to estimate the residual carrying-capacities of fire and near-field blast-damaged reactive powder concrete-filled steel tube columns. The single-degree-of-freedom model is employed to calculate the initial deflections of fire-damaged reactive powder concrete-filled steel tube columns subjected to axial and blast-induced transverse loads, and then a modified formula including double coefficient is further proposed to predict the ultimate resistance. Then, a series of blast-resistance and load carrying-capacity tests on six large-scale reactive powder concrete-filled steel tube columns are conducted to validate the suitability of theoretical method presented in this article. Blast tests demonstrate that the blast-resistances of reactive powder concrete-filled steel tube columns are more sensitive to fire durations than to scale distances. In addition, it is indicated that ISO-834 standard fire exposures cause significant degradations of material properties and have remarkable effects on the residual carrying-capacities of reactive powder concrete-filled steel tube columns. No local bucking and burst could be observed in the residual carrying-capacity tests; also, there are no visible hinge-like deformations in the mid-span area, and the excellent fire-resistances and blast-resistances of reactive powder concrete-filled steel tube columns are experimentally verified. Analytical results show that the predicted axial load capacities of six reactive powder concrete-filled steel tube columns are in good agreement with experimental data. All damage indices of the test specimens are within 0.8, meaning only minor to severe damage is done to the reactive powder concrete-filled steel tube column during fire and blast attacks, which is consistent with the test results.


2006 ◽  
Vol 4 (1) ◽  
pp. 85-97 ◽  
Author(s):  
Kazunori Fujikake ◽  
Takanori Senga ◽  
Nobuhito Ueda ◽  
Tomonori Ohno ◽  
Makoto Katagiri

2020 ◽  
Vol 24 (4) ◽  
pp. 04020018
Author(s):  
Zhi Fang ◽  
Rui Hu ◽  
Ruinian Jiang ◽  
Yu Xiang ◽  
Chuanle Liu

2018 ◽  
Vol 7 (4.19) ◽  
pp. 843
Author(s):  
Rasha Yassien Dakhil ◽  
Mustafa B. Dawood

A study for the continuous composite steel-reactive powder concrete beams under repeated loads were executed experimentally and analytically. In the experimental part, six continuous composite sections were constructed as test beams. "The‘“decks slab concretes"was connected tos steel I-beams by headed steel studs welded to the top flanges“ofs“thes‘‘steel I-beams.“T,he dimensions“ of “the“ deck slab is (2200×250×80mm), while the type of I-beam is (IPE 140) with length of (2200mm). For the present work, the experimental work includes also examining the shear in the links by creating two models (push out) and tested to determine the properties and behavior of the studs. The behavior of the studs were conducted by"getting load-slip curves. In the part of the,oretical,‘‘.tested beams.was numericallysmodeled then analyzed using thesfinite element method.‘“Thes“numerical models were carried out in three dimensionss bys“the software package (ANSYS 16.1). Verifi,cationsof thesnumericalsresults“was donesbyscompari,ngs thems with the experimentals results. “Thesresultssof thesfiniteselementsanalysissshowed good agreements‘with the results ofsthe experimental tests. The maximumsandsminimum difference‘‘in ultimate loa,ds for beams‘‘ were (5.85% and 1.33%) respectively.  The results show that stiffenerssof beamssandsstrengthening with CFRP shall increase the ultimate load capacity‘and affects on‘‘mode of failure“ of theses beams.‘  


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4173 ◽  
Author(s):  
Zbigniew Perkowski ◽  
Mariusz Czabak ◽  
Stefania Grzeszczyk ◽  
Daniel Frączek ◽  
Karolina Tatara ◽  
...  

The article describes four-point bending tests of three reinforced concrete beams with identical cross-sections, spans, and high-ductility steel reinforcement systems. Two beams were strengthened in the compressed section with a thin layer of reactive powder concrete (RPC) bonded with evenly spaced stirrups. Their remaining sections, and the third reference beam, were made of ordinary concrete. Measurements of their deflections, strains and axis curvature; ultrasonic tests; and a photogrammetric analysis of the beams are the main results of the study. For one of the beams with the RPC, the load was increased in one stage. For the two remaining beams, the load was applied in four stages, increasing the maximum load from stage to stage in order to allow the analysis of the damage evolution before reaching the bending resistance. The most important effect observed was the stable behaviour of the strengthened beams in the post-critical state, as opposed to the reference beam, which had about two to three times less energy-absorbing capacity in this range. Moreover, thanks to the use of the RPC layer, the process of concrete cover delamination in the compression zone was significantly reduced, the high ductility of the rebars was fully utilized during the formation of plastic hinges, and the bending capacity was increased by approximately 12%.


Sign in / Sign up

Export Citation Format

Share Document