Predictions of residual carrying-capacities for fire and near-field blast-damaged reactive powder concrete-filled steel tube columns

2018 ◽  
Vol 9 (4) ◽  
pp. 525-553 ◽  
Author(s):  
Wanxiang Chen ◽  
Zixin Zhou ◽  
Huihui Zou ◽  
Zhikun Guo

An approximate approach is developed to estimate the residual carrying-capacities of fire and near-field blast-damaged reactive powder concrete-filled steel tube columns. The single-degree-of-freedom model is employed to calculate the initial deflections of fire-damaged reactive powder concrete-filled steel tube columns subjected to axial and blast-induced transverse loads, and then a modified formula including double coefficient is further proposed to predict the ultimate resistance. Then, a series of blast-resistance and load carrying-capacity tests on six large-scale reactive powder concrete-filled steel tube columns are conducted to validate the suitability of theoretical method presented in this article. Blast tests demonstrate that the blast-resistances of reactive powder concrete-filled steel tube columns are more sensitive to fire durations than to scale distances. In addition, it is indicated that ISO-834 standard fire exposures cause significant degradations of material properties and have remarkable effects on the residual carrying-capacities of reactive powder concrete-filled steel tube columns. No local bucking and burst could be observed in the residual carrying-capacity tests; also, there are no visible hinge-like deformations in the mid-span area, and the excellent fire-resistances and blast-resistances of reactive powder concrete-filled steel tube columns are experimentally verified. Analytical results show that the predicted axial load capacities of six reactive powder concrete-filled steel tube columns are in good agreement with experimental data. All damage indices of the test specimens are within 0.8, meaning only minor to severe damage is done to the reactive powder concrete-filled steel tube column during fire and blast attacks, which is consistent with the test results.

2019 ◽  
Vol 19 (4) ◽  
pp. 170-184
Author(s):  
Minsheng Guan ◽  
Siying Lin ◽  
Hongbiao Du ◽  
Jie Cui ◽  
Taizhou Yan

Abstract The paper aims to select a simple and effective damage index for estimating the extent of damage of rectangular concrete-filled steel tube (RCFT) structures subjected to ground motions. Two experimental databases of cyclic tests conducted on RCFT columns and frames are compiled. Test results from the database are then used to evaluate six different damage indices, including the ductility ratio (μ), drift ratio, initial-to-secant stiffness ratio (DKJ), modified initial-to-secant stiffness ratio (Dms), energy coefficient (E), and the combined damage index (DPA) as a benchmark indicator. Selection criteria including correlation, efficiency, and proficiency are utilized in the selection process. The optimal alternative for DPA is identified on the basis of a comprehensive evaluation. The evaluations indicate that Dms previously proposed by some of the authors is the most appropriate substitution of DPA, followed by the drift ratio. For the case of the slenderness ratio less than or equal to 30, the same grades of relation between the investigated damage indices and the benchmark are observed. However, in the case of the slenderness ratio larger than 30, the drift ratio tends to be the optimal alternative. In most cases, μ is proved to be an inadequate replacement of DPA.


2013 ◽  
Vol 438-439 ◽  
pp. 706-710
Author(s):  
Ya Bin Yang ◽  
Wan Lin Cao

Shear wall with concrete filled steel tube columns and concealed trusses is a new kind of shear wall. In order to further the seismic performance of the new shear wall, experiment was carried on three 1/5 scale models, which included one traditional RC shear wall, one shear wall with concrete filled steel tube columns, one shear wall with concrete filled steel tube columns and concealed trusses. Based on the experimental study, load-carrying capacity and hysteretic property of each model were analyzed. The study show that the seismic performance of shear wall with concrete filled round steel tube columns and concealed steel trusses has high bearing capacity and good hysteretic property. Load carrying capacity calculation of shear wall with concrete filled steel tube columns and concealed steel trusses were carried out, the calculate results were in good agreement with the measured results.


2009 ◽  
Vol 405-406 ◽  
pp. 62-68
Author(s):  
Ming Zhang ◽  
Feng Xing ◽  
Liang Peng Deng ◽  
Zheng Liang Cao ◽  
Zhan Huang

Reactive powder concrete (RPC) is a new kind of material with very high mechanical behavior and durability, however, high cost and complex procedure to make RPC result in hardly apply to engineering in large scale. a new low-cost RPC that compressive strength exceeds 130MPa was prepared with the replacement of quartz sand, crushed quartz and partial of silica fume by fly ash, slag and natural fine aggregate in the paper. Manhole cover that made from the low-cost RPC can meets the requirements of different situations, such as special road, motorway, etc.


Sign in / Sign up

Export Citation Format

Share Document