surface roughness,metal removal Effect of Wire Diameter, Feeding Rate, Pulse (on/off) Time on Surface Roughness and Metal Removal Rate for Cr-Mo Steel (SCM425H) During Wire Electrical Discharge Machine (WEDM) Cutting Operation

2020 ◽  
Vol 38 (6A) ◽  
pp. 854-860
Author(s):  
Saad K. Shather ◽  
Sami A. Hammood ◽  
Noor Al-Huda A. Hussain ◽  
Noor H. Hasson

Increase the demand to produce complex shapes with high quality and dimensional accuracy such as production aerospace, cars, die sinking has been leading to increase the demand to use the non- traditional cutting operations such as wire electro-discharge machine (WEDM) rather than using the traditional operations. An idea to understand the effect of wire diameter, wire feed, pulsing (on/off) time on surface roughness, and metal removal rate of Cr-Mo steel during wire electrical discharge machining was investigated. Two Steel alloy samples with dimensions of (60 x50 x 20)mm were cut into four rectangular spaces with (5x10x20)mm at one side of each sample using wire cut (EDM) machine with a wire diameter of 0.25 mm and feeding rate 2 m/min for sample 1 and a 0.3 mm diameter and 3 m/min feeding rate for sample 2. Pulse (on, off) time was (110, 50), (112, 52), (115, 55), (116, 57) corresponds to space 1, space 2, space 3, and space 4 in both steel block. Surface roughness and metal removal rate measurements were estimated. The results showed that wire diameter, feeding rate, and pulse (on, off) time is proportional with metal removal rate, while reversed with surface roughness. The wire diameter of 0.3 mm and a feeding rate of 3m/min enhanced better surface quality and productivity. Pulse (on, off) time is the most effective parameter. Best duration time was recorded at the values (116, 57).

2020 ◽  
Vol 38 (7A) ◽  
pp. 975-983
Author(s):  
Shahad A. Taqi ◽  
Saad K. Shather

Electro discharge machining (EDM) is one of a thermal process that is used for remove of metal from the workpiece by spark erosion. The work of this machine depends on multiple variables. One of the more influential variants on this machine is the change of polarity and the use of this variable is not wide and the research depends on the polarity of the machinist. Essentially, the polarity of the tool (electrode) is positive and the workpiece is negative, this polarity can be reversed. This paper  focuses on the influence of changing the polarity (positive and negative) on the surface roughness and metal removal rate by using different parameters (current, voltages, polarity and Ton). Experiments show that the positive electrode gives (best surface roughness = 1.56 µm when the current = 5 Am and Ton = 5.5 µs) and (best metal removal rate = 0.0180 g/min when the current = 8 Am and Ton = 25 µs). Negative electrode gives (best surface roughness = 0.46 µm when the current = 5 Am and Ton = 5.5 µs) and (best metal removal rate = 0.00291 g/min when the current = 8 Am and Ton = 25 µs).


Author(s):  
Sibabrata Mondal ◽  
Dipankar Bose

This investigation presents an experimental investigation in developing small cylindrical pins in electrolytic tough pitch copper (ETP Cu) material using wire electrical discharge turning (WEDT) to evaluate surface roughness of the cylindrical turning faces. The material ETP Cu is soft in nature and has growing range of application in the field of aerospace and electronics industries for advanced applications. In this process, a customized rotary spindle has been developed and added to five-axis CNC wire electrical discharge machine (WEDM) and straight turning of the cylindrical pin has been done up to a length of 15mm with 0.5mm diameter. Under this investigation, 31 experiments along with two confirmation tests have been carried out to study the influence of four design factors—pulse on time, pulse off time, spindle speed, and servo voltage—on the machining performance of surface roughness by means the technique of design of experiment (DOE).


Wire Electrical Discharge Machining (WEPSPDM) is utilizedin industries to manufacture components of conductive strong metal with complicated shape, greater tolerance and precision. A review of the literature exposes that most of the research work has been intended for towards the optimization of WEDM operation and modeling of the process. Conventional wire electrode has been developed to a brass wire from a copper wire and finally to zinc coated wire on the brass, steel or copper wire core, by which more advanced WEDM, is realized in terms of better machining speed and accuracy. To examine the parameters likePeak Current (Ip ), Time of Pulse ON (Ton), Time of Pulse OFF (Toff), etc. by the optimization of WEDM operation and modeling of the process during micro slit machining. Analyzed the results and optimize the process parameter conditions for maximum MRR (g/min), and surface roughness based on Taguchi’s Methodology. The ANOVA analysis indicates the significant factors for maximization of MRR, improvement of Surface Roughness and regression analysis. By the research work, it has been concluded that the MRR reduces with raise in Time of Pulse OFF (Toff) and Set Voltage of spark gap (SV) besides Material Removal Rate (MRR) increases with escalating in Time of Pulse ON (Ton) and PC (IP).


2020 ◽  
Vol 38 (12A) ◽  
pp. 1852-1861
Author(s):  
Shahad A. Taqi ◽  
Saad K. Shatner

The Electro discharge machine that named (EDM) is used to remove the metal from the workpiece by spark erosion. The work of this machining depends on the multiple variables. One of the most influential variants of this machine is the polarity, the material of the electrode, the current and the time pulses. Essentially the polarity of the tool (electrode) positive and the work piece is negative, this polarity can be reversed in this paper was reversed the polarity that was made the tool (electrode) negative and the work piece was positive. The aim of this paper was focused on the influence of reversed the polarity (negative) with changing the electrode metal (copper and graphite) on the surface roughness and metal removal rate by using different parameters (current and pulses of time). Experiments show that:  the copper electrode gives (best surface roughness 0.46 µm when the current 5 Am and Ton 5.5 µs) and (worst surface roughness 1.66 µm when the current is 8 A and Ton 25 µs). And give (best values of the MRR 0.00291 g/min when the current is 8 and Ton 25 µs) and (The lowest values of MRR (0.00054 g/min when current is 5 and Ton 5.5 µs). The graphite electrode gives (best surface roughness 2.07 µm when the current 5 Am and Ton 5.5 µs) and (worst surface roughness 4.17 µm when the current is 8 A and Ton 25 µs). And give (best values of the MRR 0.05823 g/min when the current is...


2018 ◽  
Vol 2 (6) ◽  
pp. 63-67
Author(s):  

This study investigates metal removal rate (MRR) of the biomaterial by using discharge machine Neuar CNC A50 Electrical Discharge Machine Die Sinking (EDM DS). The purpose of this study is to compare machining curvature cup for material SKD 11 and stainless steel with shape curvature cup acetabular. The result showed that electrode wear is higher when high current is applied. For each applied current 0.5A and 3.0A could result electrode wear of 0.236 mm, 0.246 mm and 0.269 mm respectively. Mean time of complete discharged for each pit with 0.3mm depth with supply 0. 5A is 6.51 minutes; 1. 5A is 3.54 minutes and 3A is 1.52 minutes. The biggest mean parameter of the pit is 0.356 mm, with 3A of current is applied. From this study, it can be concluded that low current set may give lower electrode copper wear. The experiment will help a researcher to discharge biomaterial types of metal with small size of copper electrode use of EDM DS Neuar for discharge multi hole or micro pit.


2018 ◽  
Vol 877 ◽  
pp. 110-117 ◽  
Author(s):  
Poornesh Kumar Chaturvedi ◽  
Harendra Kumar Narang ◽  
Atul Kumar Sahu

Quality of the product is the major concern in manufacturing industries from customers as well as producers point of view. There are number of factors in the product such as surface condition, height, weight, length, width etc., which may be consider for the measurement of the quality. Surface roughness and Metal Removal Rate (MRR) are the two main outcomes on which numerous researchers have applied different approaches for several years to get optimum results. In this study, Taguchi Method is applied for getting optimum parameters settings for Surface roughness and Metal Removal Rate (MRR) in case of turning AlMg3 (AA5754) in CNC Lathe machine, which is an aluminum alloy having diameter 20 mm and length 100 mm. The three parameters i.e. spindle speed, feed rate and depth of cut with 3 levels are taken as the process variables and the working ranges of these parameters for conducting experiments are selected based on Taguchi’s L9 Orthogonal Array (OA) design. To analyze the significant process parameters; main effect plots for data means and for S/N ratio are generated using Minitab statistical software.


2021 ◽  
Author(s):  
Dragan Rodic ◽  
Marin Gostimirovic ◽  
Milenko Sekulic ◽  
Borislav Savkovic ◽  
Branko Strbac

Abstract It is well known that electrical discharge machining can be used in the processing of nonconductive materials. In order to improve the efficiency of machining modern engineering materials, existing electrical discharge machines are constantly being researched and improved or developed. The current machining of non-conductive materials is limited due to the relatively low material removal rate and high surface roughness. A possible technological improvement of electrical discharge machining can be achieved by innovations of existing processes. In this paper, a new approach for machining zirconium oxide is presented. It combines electrical discharge machining with assisting electrode and powder-mixed dielectric. The assisting electrode is used to enable electrical discharge machining of nonconductive material, while the powder-mixed dielectric is used to increase the material removal rate, reduce surface roughness, and decrease relative tool wear. The response surface method was used to generate classical mathematical models, analyzing the output performances of surface roughness, material removal rate and relative tool wear. Verification of the obtained models was performed based on a set of new experimental data. By combining these latest techniques, positive effects on machining performances are obtained. It was found that the surface roughness was reduced by 18%, the metal removal rate was increased by about 12% and the relative tool wear was reduced by up to 6% compared to electrical discharge machining with supported electrode without powder.


Author(s):  
Hossam M Yehia ◽  
Mohamed Hakim ◽  
Ahmed El-Assal

The integrated electrochemical grinding machining has received wide acceptance in the aircraft turbine industry for the machining of blades, vanes, and honeycomb seal rings. Also, medical devices, instruments and forceps, shells, precision nozzles, instrument coupling, and air rotor motors that produced from stainless steel and new materials have all successfully been accomplished with electrochemical grinding. To improve the metal removal rate and to reduce the surface roughness ( Ra) of the electrochemical grinding at high voltages, an integration between the alumina abrasive jet and the electrochemical grinding machining has been performed. The effect of the Al2O3 abrasive content on the metal removal rate and the Ra of the K110 alloy steel using Everite electrochemical grinding 618 at different voltages, different feed rates, different electrolyte NaCl concentrations, and different depths of the cut were successfully investigated. The results revealed that the abrasive electrochemical grinding was better than the electrochemical grinding results. The maximum effect of the Al2O3 on the metal removal rate was achieved at 5 wt.%. The current density in the machining gap was affected by the addition of the Al2O3, where it was decreased at percentages over 5-wt.% Al2O3. The abrasive electrochemical grinding resulted in lower surface roughness than the electrochemical grinding process.


Sign in / Sign up

Export Citation Format

Share Document