Optimization of MRR and Surface Roughness of AlMg3 (AA5754) Alloy in CNC Lathe Machine by Using Taguchi Method

2018 ◽  
Vol 877 ◽  
pp. 110-117 ◽  
Author(s):  
Poornesh Kumar Chaturvedi ◽  
Harendra Kumar Narang ◽  
Atul Kumar Sahu

Quality of the product is the major concern in manufacturing industries from customers as well as producers point of view. There are number of factors in the product such as surface condition, height, weight, length, width etc., which may be consider for the measurement of the quality. Surface roughness and Metal Removal Rate (MRR) are the two main outcomes on which numerous researchers have applied different approaches for several years to get optimum results. In this study, Taguchi Method is applied for getting optimum parameters settings for Surface roughness and Metal Removal Rate (MRR) in case of turning AlMg3 (AA5754) in CNC Lathe machine, which is an aluminum alloy having diameter 20 mm and length 100 mm. The three parameters i.e. spindle speed, feed rate and depth of cut with 3 levels are taken as the process variables and the working ranges of these parameters for conducting experiments are selected based on Taguchi’s L9 Orthogonal Array (OA) design. To analyze the significant process parameters; main effect plots for data means and for S/N ratio are generated using Minitab statistical software.

2021 ◽  
Vol 22 (2) ◽  
pp. 283-293
Author(s):  
Savina Jaddinagadhe Puttaswamy ◽  
Raghavendra Bommanahalli Venkatagiriyappa

Nanocomposites were prepared with Al-6065-Si and multi walled carbon nanotubes of 1 wt.% as reinforcement through the stir-casting method. Fabricated nanocomposites were machined on a lathe machine using a tungsten carbide tool. The study investigated the multi-objective optimization of the turning operation. Cutting velocity, feed, and depth of cut were considered for providing minimum Surface Roughness of the workpiece. Also, the power consumed by the lathe machine with maximum metal removal rate was examined by surface response methodology. The design of experiments was developed based on rotational central composite design. Analysis of variance was executed to investigate the adequacy and the suitable fit of the developed mathematical models. Multiple regression models were used to represent the relationship between the input and the desired output variables. The analysis indicates that the feed is the most influential factor that effects the surface roughness of the workpiece. Cutting speed and the depth of cut are two other important factors that proportionally influence the power consumed by the lathe tool as compared to the feed rate. ABSTRAK: Komposit nano disediakan bersama Al-6065-Si dan karbon nanotiub berbilang dinding sebanyak 1 wt.% sebagai bahan penguat melalui kaedah kacauan-tuangan. Komposit nano yang terhasil melalui mesin pelarik ini menggunakan alat tungsten karbida. Kajian ini merupakan pengoptimuman pelbagai objektif operasi pusingan. Kelajuan potongan, suapan dan kedalaman potongan diambil kira sebagai pemberian minimum pada kekasaran permukaan bahan kerja. Tenaga yang digunakan bagi mesin pelarik dengan kadar maksimum penyingkiran logam diteliti melalui kaedah tindak balas permukaan. Rekaan eksperimen yang dibangunkan ini adalah berdasarkan rekaan komposit pusingan tengah. Analisis varian telah dijalankan bagi mengkaji kecukupan dan penyesuaian lengkap bagi model matematik yang dibangunkan. Model regresi berganda digunakan bagi menunjukkan hubungan antara input dan pembolehubah output yang dikehendaki. Analisis menunjukkan pemberian suapan merupakan faktor mempengaruhi keberkesanan kekasaran permukaan bahan kerja. Kelajuan pemotongan dan kedalaman potongan adalah dua faktor penting lain yang mempengaruhi kadar langsung ke atas tenaga yang digunakan oleh mesin pelarik dibandingkan kadar pemberian suapan.


2011 ◽  
Vol 188 ◽  
pp. 307-313 ◽  
Author(s):  
Tong Chao Ding ◽  
Song Zhang ◽  
Z.M. Li ◽  
Yuan Wei Wang

In this paper, the orthogonal experiments and the optimization experiments with the same metal removal rate are designed to investigate the main effects and primary interaction of cutting parameters on surface roughness and to search the optimal cutting parameter under a certain removal rate when end-milling hardened AISI H13 steel with the PVD coated carbide insert. The empirical model for surface roughness based on the orthogonal experiments and the optimization experiments with the same metal removal rate and the optimal cutting parameter were all verified. Under a certain metal removal rate, the combination of high cutting speed, small axial depth of cut and high feed, small radial depth of cut generates the best surface roughness in hard milling of AISI H13.


2018 ◽  
Vol 49 (2) ◽  
pp. 62-81 ◽  
Author(s):  
Shailendra Kumar ◽  
Bhagat Singh

Tool chatter is an unavoidable phenomenon encountered in machining processes. Acquired raw chatter signals are contaminated with various types of ambient noises. Signal processing is an efficient technique to explore chatter as it eliminates unwanted background noise present in the raw signal. In this study, experimentally recorded raw chatter signals have been denoised using wavelet transform in order to eliminate the unwanted noise inclusions. Moreover, effect of machining parameters such as depth of cut ( d), feed rate ( f) and spindle speed ( N) on chatter severity and metal removal rate has been ascertained experimentally. Furthermore, in order to quantify the chatter severity, a new parameter called chatter index has been evaluated considering aforesaid denoised signals. A set of 15 experimental runs have been performed using Box–Behnken design of experiment. These experimental observations have been used to develop mathematical models for chatter index and metal removal rate considering response surface methodology. In order to check the statistical significance of control parameters, analysis of variance has been performed. Furthermore, more experiments are conducted and these results are compared with the theoretical ones in order to validate the developed response surface methodology model.


Author(s):  
Rajesh Kumar Bhushan

Optimization in turning means determination of the optimal set of the machining parameters to satisfy the objectives within the operational constraints. These objectives may be the minimum tool wear, the maximum metal removal rate (MRR), or any weighted combination of both. The main machining parameters which are considered as variables of the optimization are the cutting speed, feed rate, depth of cut, and nose radius. The optimum set of these four input parameters is determined for a particular job-tool combination of 7075Al alloy-15 wt. % SiC (20–40 μm) composite and tungsten carbide tool during a single-pass turning which minimizes the tool wear and maximizes the metal removal rate. The regression models, developed for the minimum tool wear and the maximum MRR were used for finding the multiresponse optimization solutions. To obtain a trade-off between the tool wear and MRR the, a method for simultaneous optimization of the multiple responses based on an overall desirability function was used. The research deals with the optimization of multiple surface roughness parameters along with MRR in search of an optimal parametric combination (favorable process environment) capable of producing desired surface quality of the turned product in a relatively lesser time (enhancement in productivity). The multi-objective optimization resulted in a cutting speed of 210 m/min, a feed of 0.16 mm/rev, a depth of cut of 0.42 mm, and a nose radius of 0.40 mm. These machining conditions are expected to respond with the minimum tool wear and maximum the MRR, which correspond to a satisfactory overall desirability.


Author(s):  
Hossam M Yehia ◽  
Mohamed Hakim ◽  
Ahmed El-Assal

The integrated electrochemical grinding machining has received wide acceptance in the aircraft turbine industry for the machining of blades, vanes, and honeycomb seal rings. Also, medical devices, instruments and forceps, shells, precision nozzles, instrument coupling, and air rotor motors that produced from stainless steel and new materials have all successfully been accomplished with electrochemical grinding. To improve the metal removal rate and to reduce the surface roughness ( Ra) of the electrochemical grinding at high voltages, an integration between the alumina abrasive jet and the electrochemical grinding machining has been performed. The effect of the Al2O3 abrasive content on the metal removal rate and the Ra of the K110 alloy steel using Everite electrochemical grinding 618 at different voltages, different feed rates, different electrolyte NaCl concentrations, and different depths of the cut were successfully investigated. The results revealed that the abrasive electrochemical grinding was better than the electrochemical grinding results. The maximum effect of the Al2O3 on the metal removal rate was achieved at 5 wt.%. The current density in the machining gap was affected by the addition of the Al2O3, where it was decreased at percentages over 5-wt.% Al2O3. The abrasive electrochemical grinding resulted in lower surface roughness than the electrochemical grinding process.


2008 ◽  
Vol 07 (02) ◽  
pp. 337-343 ◽  
Author(s):  
T. SEKAR ◽  
R. MARAPPAN

Electrochemical machining (ECM) is a non-traditional process used mainly to cut hard or difficult to cut metals, where the application of a more traditional process is not convenient. Those difficult to cut metals demand high energy to form chips, which can result in thermal effects due to the high temperatures inherent to the process in the chip–tool interface. In traditional processes, the heat generated during the cut is dissipated to the tool, chip, workpiece and environment, affecting the surface integrity of the workpiece, mainly for those hard materials. In this work, experimental investigations have been made on the various influencing parameters involved in the Metal removal rate (MRR) and Surface roughness using ECM on AISI 202 steel. The major intervening parameters are studied and the relationship between the parameters has been determined to achieve maximum metal removal rate and minimum surface roughness by using NaNO 3-Aqua solution.


2020 ◽  
Vol 38 (7A) ◽  
pp. 975-983
Author(s):  
Shahad A. Taqi ◽  
Saad K. Shather

Electro discharge machining (EDM) is one of a thermal process that is used for remove of metal from the workpiece by spark erosion. The work of this machine depends on multiple variables. One of the more influential variants on this machine is the change of polarity and the use of this variable is not wide and the research depends on the polarity of the machinist. Essentially, the polarity of the tool (electrode) is positive and the workpiece is negative, this polarity can be reversed. This paper  focuses on the influence of changing the polarity (positive and negative) on the surface roughness and metal removal rate by using different parameters (current, voltages, polarity and Ton). Experiments show that the positive electrode gives (best surface roughness = 1.56 µm when the current = 5 Am and Ton = 5.5 µs) and (best metal removal rate = 0.0180 g/min when the current = 8 Am and Ton = 25 µs). Negative electrode gives (best surface roughness = 0.46 µm when the current = 5 Am and Ton = 5.5 µs) and (best metal removal rate = 0.00291 g/min when the current = 8 Am and Ton = 25 µs).


2020 ◽  
Vol 38 (6A) ◽  
pp. 854-860
Author(s):  
Saad K. Shather ◽  
Sami A. Hammood ◽  
Noor Al-Huda A. Hussain ◽  
Noor H. Hasson

Increase the demand to produce complex shapes with high quality and dimensional accuracy such as production aerospace, cars, die sinking has been leading to increase the demand to use the non- traditional cutting operations such as wire electro-discharge machine (WEDM) rather than using the traditional operations. An idea to understand the effect of wire diameter, wire feed, pulsing (on/off) time on surface roughness, and metal removal rate of Cr-Mo steel during wire electrical discharge machining was investigated. Two Steel alloy samples with dimensions of (60 x50 x 20)mm were cut into four rectangular spaces with (5x10x20)mm at one side of each sample using wire cut (EDM) machine with a wire diameter of 0.25 mm and feeding rate 2 m/min for sample 1 and a 0.3 mm diameter and 3 m/min feeding rate for sample 2. Pulse (on, off) time was (110, 50), (112, 52), (115, 55), (116, 57) corresponds to space 1, space 2, space 3, and space 4 in both steel block. Surface roughness and metal removal rate measurements were estimated. The results showed that wire diameter, feeding rate, and pulse (on, off) time is proportional with metal removal rate, while reversed with surface roughness. The wire diameter of 0.3 mm and a feeding rate of 3m/min enhanced better surface quality and productivity. Pulse (on, off) time is the most effective parameter. Best duration time was recorded at the values (116, 57).


Sign in / Sign up

Export Citation Format

Share Document