CONTROL OVER WATERING OF GAS WELLS BY THE UNIT ELECTRICAL CONDUCTIVITY OF THE LIQUID PHASE WATER-GAS FLOW

Author(s):  
V.S. Permyakov ◽  
◽  
A.K. Manstein ◽  
I.N. Yeltsov ◽  
N.V. Yurkevich ◽  
...  
1989 ◽  
Vol 51 (2) ◽  
pp. 161-170 ◽  
Author(s):  
M.M.Taqui Khan ◽  
S.B. Halligudi ◽  
N.Nageswara Rao ◽  
Sumita Shukla

Micromachines ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 71
Author(s):  
Georgia Kontaxi ◽  
Yorgos G. Stergiou ◽  
Aikaterini A. Mouza

Over the last few years, microbubbles have found application in biomedicine. In this study, the characteristics of bubbles formed when air is introduced from a micro-tube (internal diameter 110 μm) in non-Newtonian shear thinning fluids are studied. The dependence of the release time and the size of the bubbles on the gas phase rate and liquid phase properties is investigated. The geometrical characteristics of the bubbles are also compared with those formed in Newtonian fluids with similar physical properties. It was found that the final diameter of the bubbles increases by increasing the gas flow rate and the liquid phase viscosity. It was observed that the bubbles formed in a non-Newtonian fluid have practically the same characteristics as those formed in a Newtonian fluid, whose viscosity equals the asymptotic viscosity of the non-Newtonian fluid, leading to the assumption that the shear rate around an under-formation bubble is high, and the viscosity tends to its asymptotic value. To verify this notion, bubble formation was simulated using Computational Fluid Dynamics (CFD). The simulation results revealed that around an under-formation bubble, the shear rate attains a value high enough to lead the viscosity of the non-Newtonian fluid to its asymptotic value.


Author(s):  
Weiguo Zhang ◽  
Hao Jin ◽  
Qingjie Du ◽  
Kai Xie ◽  
Binbin Zhang ◽  
...  
Keyword(s):  

2010 ◽  
Vol 156-157 ◽  
pp. 1090-1096
Author(s):  
Wei Qiang Wang ◽  
Ai Ju Li ◽  
Ming Ming You ◽  
Bin Xia

Composites of phenol formaldehyde (PF) resin/graphite reinforced by milled carbon fibers (MCFs) for bipolar plates are obtained by hot compression molding. The raw materials of the MCF particles, PF resin powder and graphite powder are simply dry powder ball milled and mixed. The effects of PF resin content and the content, granularity and surface treatment methods, such as air oxidation and Fenton/ultraviolet (UV) liquid-phase oxidation of MCFs on the electrical conductivity and flexural strength of the composites are measured by methods of four-point probe technique and three point flexural test, and the fracture patterns of the composites are analyzed by scanning electron microscope (SEM). The results indicate that the electrical conductivity decreases and flexural strength increases with the increase of PF resin content. Especially, the values of electrical conductivity and flexural strength can reach 165.28 S.cm-1 and 55.11MPa respectively when the PF resin content was 17% in weight. The properties of composites reinforced by air oxidation treated MCFs are better than those by liquid-phase oxidation treated one. The electrical conductivity and flexural strength of the composites are 208.12S.cm-1 and 57.44 MPa when they reinforced by 5% MCFs which treated by air oxidation at 450 . Compared with the nonreinfoced composites, the properties of reinforced composites increase 25.92% in electrical conductivity and 4.23% in flexural strength.


Sign in / Sign up

Export Citation Format

Share Document