wgs reaction
Recently Published Documents


TOTAL DOCUMENTS

160
(FIVE YEARS 44)

H-INDEX

31
(FIVE YEARS 3)

Author(s):  
Yuanting Tang ◽  
Yongjie Chen ◽  
Xiao Liu ◽  
Chengxiong Wang ◽  
Yunkun Zhao ◽  
...  

The bifunctional role of noble metal/oxide interface in the activation of reactants is of vital importance in heterogeneous catalysis of water-gas shift (WGS) reaction. Herein, three types of shape-controlled TiO2...


2021 ◽  
Vol 1 ◽  
pp. 81
Author(s):  
Paranjeet Lakhtaria ◽  
Paulo Ribeirinha ◽  
Werneri Huhtinen ◽  
Saara Viik ◽  
José Sousa ◽  
...  

Aqueous-phase reforming (APR) can convert methanol and other oxygenated hydrocarbons to hydrogen and carbon dioxide at lower temperatures when compared with the corresponding gas phase process. APR favours the water-gas shift (WGS) reaction and inhibits alkane formation; moreover, it is a simpler and more energy efficient process compared to gas-phase steam reforming. For example, Pt-based catalysts supported on alumina are typically selected for methanol APR, due to their high activity at temperatures of circa 200°C. However, non-noble catalysts such as nickel (Ni) supported on metal-oxides or zeolites are being investigated with promising results in terms of catalytic activity and stability. The development of APR kinetic models and reactor designs is also being addressed to make APR a more attractive process for producing in situ hydrogen.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6102
Author(s):  
Seunghyun Cheon ◽  
Manhee Byun ◽  
Dongjun Lim ◽  
Hyunjun Lee ◽  
Hankwon Lim

As many countries have tried to construct a hydrogen (H2) society to escape the conventional energy paradigm by using fossil fuels, methane pyrolysis (MP) has received a lot of attention owing to its ability to produce H2 with no CO2 emission. In this study, a techno-economic analysis including a process simulation, itemized cost estimation, and sensitivity and scenario analysis was conducted for the system of thermal-based and catalyst-based MP (TMP-S1 and CMP-S2), and the system with the additional H2 production processes of carbon (C) gasification and water–gas shift (WGS) reaction (TMPG-S3 and CMPG-S4). Based on the technical performance expressed by H2 and C production rate, the ratio of H2 combusted to supply the heat required and the ratio of reactants for the gasifier (C, Air, and water (H2O)), unit H2 production costs of USD 2.14, 3.66, 3.53, and 3.82 kgH2−1 from TMP-S1, CMP-S2, TMPG-S3, and CMPG-S4, respectively, were obtained at 40% H2 combusted and a reactants ratio for C-Air-H2O of 1:1:2. Moreover, trends of unit H2 production cost were obtained and key economic parameters of the MP reactor, reactant, and C selling price were represented by sensitivity analysis. In particular, economic competitiveness compared with commercialized H2 production methods was reported in the scenario analysis for the H2 production scale and C selling price.


Author(s):  
Edgardo Meza Fuentes ◽  
Johana Rodríguez Ruiz ◽  
Laurence Massin ◽  
Francisco J. Cadete Santos Aires ◽  
Arnaldo da Costa Faro ◽  
...  

2021 ◽  
Vol 1 ◽  
pp. 81
Author(s):  
Paranjeet Lakhtaria ◽  
Paulo Ribeirinha ◽  
Werneri Huhtinen ◽  
Saara Viik ◽  
José Sousa ◽  
...  

Aqueous-phase reforming (APR) can convert methanol and other oxygenated hydrocarbons to hydrogen and carbon dioxide at lower temperatures when compared with the corresponding gas phase process. APR favours the water-gas shift (WGS) reaction and inhibits alkane formation; moreover, it is a simpler and more energy efficient process compared to gas-phase steam reforming. For example, Pt-based catalysts supported on alumina are typically selected for methanol APR, due to their high activity at temperatures of circa 200°C. However, non-noble catalysts such as nickel (Ni) supported on metal-oxides or zeolites are being investigated with promising results in terms of catalytic activity and stability. The development of APR kinetic models and reactor designs is also being addressed to make APR a more attractive process for producing in situ hydrogen.


2021 ◽  
Author(s):  
Zohreh Razmara

Abstract A 2D heterometallic copper(II)–sodium(I) complex based on pyridine 2,6-dicarboxylato (dipic2-) formulated as [Cu(μ-dipic)2{Na2(µ-H2O)4}]n. 2nH2O (1) has been synthesized. Thermal stability of complex 1 was studied by thermo gravimetric analysis (TGA) and differential thermal analysis (DTA). Single-crystal X-ray diffraction (SC-XRD) analysis showed that the parallelepiped colorless crystal of complex 1 crystallizes in a monoclinic system with the space group P2/c . A highly dispersed truncated octahedral catalyst formulated as Cu-Na/Al2O3 (CNM) was prepared by thermal decomposition of complex 1. Besides, the reference catalyst of Cu-Na/Al2O3 (CNR) was prepared by impregnation conventional method. The catalysts were examined by FT-IR, powder X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET) surface area, and subjected to water-gas shift (WGS) reaction in the temperature range of 150-400 °C. The catalysts showed strong surface structure-activity dependence in WGS reaction. Improved catalytic performance during the water-gas shift reaction was observed for CNM compared to CNR due to its high dispersion, smaller particle size, and higher BET specific surface area.


2021 ◽  
Vol 9 (5) ◽  
pp. 1090
Author(s):  
Habibu Aliyu ◽  
Ronnie Kastner ◽  
Pieter de Maayer ◽  
Anke Neumann

Parageobacillus thermoglucosidasius is known to catalyse the biological water gas shift (WGS) reaction, a pathway that serves as a source of alternative energy and carbon to a wide variety of bacteria. Despite increasing interest in this bacterium due to its ability to produce biological hydrogen through carbon monoxide (CO) oxidation, there are no data on the effect of toxic CO gas on its physiology. Due to its general requirement of O2, the organism is often grown aerobically to generate biomass. Here, we show that carbon monoxide (CO) induces metabolic changes linked to distortion of redox balance, evidenced by increased accumulation of organic acids such as acetate and lactate. This suggests that P. thermoglucosidasius survives by expressing several alternative pathways, including conversion of pyruvate to lactate, which balances reducing equivalents (oxidation of NADH to NAD+), and acetyl-CoA to acetate, which directly generates energy, while CO is binding terminal oxidases. The data also revealed clearly that P. thermoglucosidasius gained energy and grew during the WGS reaction. Combined, the data provide critical information essential for further development of the biotechnological potential of P. thermoglucosidasius.


Author(s):  
Miriam González‐Castaño ◽  
Svetlana Ivanova ◽  
Miguel Angel Centeno ◽  
Theophiles Ioanides ◽  
Harvey Arellano‐García ◽  
...  
Keyword(s):  

2021 ◽  
Vol 11 (6) ◽  
pp. 2672
Author(s):  
Sylvain Larose ◽  
Raynald Labrecque ◽  
Patrice Mangin

Due to concerns regarding fossil greenhouse gas emissions, biogenic material such as forest residues is viewed nowadays as a valuable source of carbon atoms to produce syngas that can be used to synthesise biofuels such as methanol. A great challenge in using gasified biomass for methanol production is the large excess of carbon in the syngas, as compared to the H2 content. The water–gas shift (WGS) reaction is often used to add H2 and balance the syngas. CO2 is also produced by this reaction. Some of the CO2 has to be removed from the gaseous mixture, thus decreasing the process carbon yield and maintaining CO2 emissions. The WGS reaction also decreases the overall process heat output. This paper demonstrates the usefulness of using an extra source of renewable H2 from steam electrolysis instead of relying on the WGS reaction, for a much higher performance of syngas production from gasification of wood in a simple system with a fixed-bed gasifier. A commercial process simulation software is employed to predict that this approach will be more efficient (overall energy efficiency of about 67%) and productive (carbon conversion yield of about 75%) than relying on the WGS reaction. The outlook for this process that includes the use of the solid oxide electrolyser technology appears to be very promising because the electrolyser has the dual function of providing all of the supplemental H2 required for syngas balancing and all the O2 required for the production of a suitable hot raw syngas. This process is conducive to biomethanol production in dispersed, small plants using local biomass for end-users from the same geographical area, thus contributing to regional sustainability.


Sign in / Sign up

Export Citation Format

Share Document