scholarly journals FUZZY LOGIC CONTROLLER BASED D-STATCOM FOR POWER QUALITY SOLUTION IN DISTRIBUTED GENERATED SYSTEM

2021 ◽  
Vol 6 (VII) ◽  
pp. 1-6
Author(s):  
Prerna Tundwal R.R. Joshi
Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 892
Author(s):  
Poornima Udaychandra Panati ◽  
Sridhar Ramasamy ◽  
Mominul Ahsan ◽  
Julfikar Haider ◽  
Eduardo M.G. Rodrigues

The existing solutions for reducing total harmonic distortion (THD) using different control algorithms in shunt active power filters (SAPFs) are complex. This work proposes a split source inverter (SSI)-based SAPF for improving the power quality in a nonlinear load system. The advantage of the SSI topology is that it is of a single stage boost inverter with an inductor and capacitor where the conventional two stages with an intermediate DC-DC conversion stage is discarded. This research proposes inventive control schemes for SAPF having two control loops; the outer control loop regulates the DC link voltage whereas the inner current loop shapes the source current profile. The control mechanism implemented here is an effective, less complex, indirect scheme compared to the existing time domain control algorithms. Here, an intelligent fuzzy logic control regulates the DC link voltage which facilitates reference current generation for the current control scheme. The simulation of the said system was carried out in a MATLAB/Simulink environment. The simulations were carried out for different load conditions (RL and RC) using a fuzzy logic controller (FLC) and PI controllers in the outer loop (voltage control) and hysteresis current controller (HCC) and sinusoidal pulse width modulation (SPWM) in the inner loop (current control). The simulation results were extracted for dynamic load conditions and the results demonstrated that the THD can be reduced to 0.76% using a combination of SPWM and FLC. Therefore, the proposed system proved to be effective and viable for reducing THD. This system would be highly applicable for renewable energy power generation such as Photovoltaic (PV) and Fuel cell (FC).


This paper accord the Power Quality interpretation to make apparent for electricity consumers been made better power quality with application of DVR.Despite of advantages of DVR, it focuses full extent of the relatedness surrounded by loads, various power networks. DVR is most accepted power device which could be used for better solution for the disturbances of voltages in distribution systems for sensitive loads. For efficiency considerations, the DVR mostly hinge on an act of presenting the control modus, and can be harnessed to switching the inverters. Reliability of hysteresis voltage control with ease in operation under variable switching frequency can be trustworthy for a DVR can introduced and the proposed methods achieves good compensation of voltages under disturbances and can be seen by the simulation by using fuzzy logic controller.


Author(s):  
Abdul Rasheed ◽  
G. Keshava Rao

<p>Generally, the power systems are mainly effected by the continuous changes in operational requirement and increasing amount of distributed energy systems. This paper proposes a new concept of power-control strategies for a micro grid generation system for better transfer of power. The micro grids are obtained with the general renewable energy sources and this concept provides the maximum utilization of power at environmental free conditions with low losses; then the system efficiency is also improved. This paper proposes a single stage converter based micro grid to reduce the number of converters in an individual ac or dc grid. The proposed micro grid concept can work in both stand-alone mode and also in grid interfaced mode. The distortions that occur in power system due to changes in load or because of usage of non-linear loads, can be eliminated by using control strategies designed for shunt active hybrid filters such as series and shunt converters. A conventional Proportional Integral (PI) and Fuzzy Logic Controllers are used for power quality enhancement by reducing the distortions in the output power. The simulation results are compared among the two control strategies, that fuzzy logic controller and pi controller.</p>


2019 ◽  
Vol 15 (2) ◽  
pp. 50-60
Author(s):  
Abdul-Jabbar Ali ◽  
Wael Zayer ◽  
Samhar Shukir

The power quality problems can be defined as the difference between the quality of power supplied and the quality of power required. Recently a large interest has been focused on a power quality domain due to: disturbances caused by non-linear loads and Increase in number of electronic devices. Power quality measures the fitness of the electric power transmitted from generation to industrial, domestic and commercial consumers. At least 50% of power quality problems are of voltage quality type. Voltage sag is the serious power quality issues for the electric power industry and leads to the damage of sensitive equipments like, computers, programmable logic controller (PLC), adjustable speed drives (ADS). The prime goal of this paper is to investigate the performance of the Fuzzy Logic controller based DVR in reduction the power disturbances to restore the load voltage to the nominal value and reduce the THD to a permissible value which is 5% for the system less than 69Kv. The modeling and simulation of a power distribution system have been achieved using MATLABL/Simulink. Different faults conditions and power disturbances with linear and non-linear loads are created with the proposed system, which are initiated at a duration of 0.8 sec and kept till 0.95 sec.


Sign in / Sign up

Export Citation Format

Share Document