scholarly journals Synthesis, Characterization and Photocatalytic Activity of Calcareous/TiO2 Nanocomposites under UV Light Irradiation using Methylene Blue Dye

2019 ◽  
Vol 5 (1) ◽  
pp. 599-602
Author(s):  
P. Mariselvi . ◽  
T. Anantha kumar . ◽  
V. Veeraputhiran . ◽  
G. Alagumuthu .
2020 ◽  
Vol 979 ◽  
pp. 175-179
Author(s):  
M. Nagalakshmi ◽  
N. Anusuya ◽  
S. Karuppuchamy

Titanium dioxide (TiO2) nanoparticles have been successfully prepared by biological method and the resulting material was characterized by XRD, FTIR, SEM, EDAX and UV-Vis spectroscopy. The synthesized TiO2 materials successfully degraded the methylene blue dye (MB) under UV light irradiation.


2012 ◽  
Vol 512-515 ◽  
pp. 1677-1681
Author(s):  
Feng Zhou ◽  
Ying Qing Fu ◽  
Xin Wan

A facile route was demonstrated to obtain an efficient graphene-hybridized TiO2 photocatalyst. The photodegradation results of Methylene Blue over graphene hybridized with TiO2 showed that the photocatalytic activity could be significantly enhanced under UV light irradiation. The structure between TiO2 and graphene as well as its effect on the photocatalytic activity were systematically investigated. The mechanism of the enhanced photocatalytic activity is based to the high migration efficiency and the inhibition of recombination of photoinduced electron-hole pairs. The graphene hydridization is proven to be a promising approach to develop highly efficient and stable photocatalysts under UV light irradiation.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
R. M. Mohamed ◽  
E. S. Aazam

CeO2-SiO2nanoparticles were synthesized for the first time by a facile microwave-assisted irradiation process. The effect of irradiation time of microwave was studied. The materials were characterized by N2adsorption, XRD, UV-vis/DR, and TEM. All solids showed mesoporous textures with high surface areas, relatively small pore size diameters, and large pore volume. The X-ray diffraction results indicated that the as-synthesized nanoparticles exhibited cubic CeO2without impurities and amorphous silica. The transmission electron microscopy (TEM) images revealed that the particle size of CeO2-SiO2nanoparticles, which were prepared by microwave method for 30 min irradiation times, was around 8 nm. The photocatalytic activities were evaluated by the decomposition of methylene blue dye under UV light irradiations. The results showed that the irradiation under the microwave produced CeO2-SiO2nanoparticles, which have the best crystallinity under a shorter irradiation time. This indicates that the introduction of the microwave really can save energy and time with faster kinetics of crystallization. The sample prepared by 30 min microwave irradiation time exhibited the highest photocatalytic activity. The photocatalytic activity of CeO2-SiO2nanoparticles, which were prepared by 30 min irradiation times was found to have better performance than commercial reference P25.


RSC Advances ◽  
2014 ◽  
Vol 4 (58) ◽  
pp. 30798-30806 ◽  
Author(s):  
Jian Cao ◽  
Qianyu Liu ◽  
Donglai Han ◽  
Shuo Yang ◽  
Jinghai Yang ◽  
...  

ZnS–graphene nanocomposites exhibit excellent photocatalytic activity for degradation of methylene blue under UV light irradiation.


Author(s):  
Muhamad Rafiq Kamaluddin ◽  
Nur Izzah Iwanina Zamri ◽  
Eny Kusrini ◽  
Wuwuh Wijang Prihandini ◽  
Abdul Hanif Mahadi ◽  
...  

2018 ◽  
Vol 17 (3) ◽  
pp. 312-321
Author(s):  
Long Men ◽  
Zhan Ge ◽  
Sun Meng-Yun ◽  
Zhuang Hong ◽  
Wang Ran

In this article, we studied the preparation of Fe3+/TiO2 nanoparticles and the photocatalytic disinfection effects of two typical foodborne microorganisms, a gram-negative bacterium (Salmonella typhimurium) and a gram-positive bacterium (Listeria monocytogenes), in meat products. The physical properties of Fe3+/TiO2 nanoparticles embedded with various levels of Fe3+ (0%–10%) and synthesized through an impregnation process were investigated using X-ray diffraction, transmission electron microscopy, and UV-vis spectrophotometer, and their photocatalytic activities were evaluated by measuring the degradation of methylene blue dye and the disinfection of foodborne pathogens S. typhimurium and L. monocytogenes under visible light and UV light. Fe3+ ions were found to be scattered across TiO2 surfaces or across TiO2 crystal lattices as microcrystals. However, the capacity for TiO2 nanoparticles to absorb visible light was significantly enhanced after they were embedded with.Fe3+/TiO2 nanoparticles with molar ratios (R) of Fe3+ to TiO2 of 0.001:1, 0.005:1, and 0.01:1 exhibited higher levels of methylene blue dye photocatalytic degradation and higher levels of foodborne pathogen photocatalytic disinfection than the TiO2 control. However, nanoparticles containing >1% Fe3+ exhibited lower levels of photocatalytic activity than the TiO2 control. Salmonella typhimurium was more resistant to the nano-Fe3+/TiO2 treatment than L. monocytogenes under visible and UV light conditions. These experiments demonstrate that embedding Fe3+ in TiO2 nanoparticles does not remarkably influence the TiO2 nanoparticle size or structure. Embedding appropriate levels of Fe3+ content (0.1%–1%) can enhance the photocatalytic activity of TiO2 nanoparticles.


2016 ◽  
Vol 74 (10) ◽  
pp. 2325-2336 ◽  
Author(s):  
W. M. A. El Rouby ◽  
A. A. Farghali ◽  
A. Hamdedein

Cerium (IV) oxide (CeO2), samarium (Sm) and gadolinium (Gd) doped CeO2 nanoparticles were prepared using microwave technique. The effect of microwave irradiation time, microwave power and pH of the starting solution on the structure and crystallite size were investigated. The prepared nanoparticles were characterized using X-ray diffraction, FT-Raman spectroscopy, and transmission electron microscope. The photocatalytic activity of the as-prepared CeO2, Sm and Gd doped CeO2 toward degradation of methylene blue (MB) dye was investigated under UV light irradiation. The effect of pH, the amount of catalyst and the dye concentration on the degradation extent were studied. The photocatalytic activity of CeO2 was kinetically enhanced by trivalent cation (Gd and Sm) doping. The results revealed that Gd doped CeO2 nanoparticles exhibit the best catalytic degradation activity on MB under UV irradiation. For clarifying the environmental safety of the by products produced from the degradation process, the pathways of MB degradation were followed using liquid chromatography/mass spectroscopy (LC/MS). The total organic carbon content measurements confirmed the results obtained by LC/MS. Compared to the same nanoparticles prepared by another method, it was found that Gd doped CeO2 prepared by hydrothermal process was able to mineralize MB dye completely under UV light irradiation.


Sign in / Sign up

Export Citation Format

Share Document